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ABSTRACT

Electromagnetic radiation at the plasma frequency and/or its second harmonic, the so-called plasma emis-
sion, is widely accepted as the fundamental process responsible for solar type II and III radio bursts.
There have also been occasional observations of higher-harmonic plasma emissions in the solar-terrestrial
environment. This paper presents the first demonstration of multiple harmonic emission by means of two-
dimensional electromagnetic particle-in-cell simulation. This finding indicates that under certain circum-
stances the traditional mechanism of fundamental-harmonic pair emission might also be accompanied by
higher-harmonic components. Consequently, the present findings are highly relevant to in situ observa-
tions of third- and/or higher-harmonic plasma emission in astrophysical and solar-terrestrial environments.
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1. INTRODUCTION

The emission of electromagnetic (EM) radiation at the funda-
mental (F) plasma frequency and/or its second harmonic (2H),
the so-called plasma emission, is well known. Classic exam-
ples are the solar type II and III radio bursts (Goldman 1983;
Melrose 1985; Robinson & Cairns 1998a, 1998b, 1998c¢). Lab-
oratory beam—plasma interaction experiments also demonstrate
plasma emission or equivalent phenomenon (Hutchinson et al.
1978; Benford et al. 1980; Whelan & Stenzel 1985a, 1985b;
Intrator et al. 1984). One of the most commonly accepted
mechanisms for the 2H EM emission involves the merging of
two oppositely traveling Langmuir waves, compactly expressed
as L+L' — 2H, where L stands for the primary Langmuir
wave traveling along the electron beam, while L’ represents
the backscattered Langmuir wave traveling opposite to L. Here,
2H stands for the 2H EM wave. For the emission at the funda-
mental, the suggested radiation mechanism is either the decay of
Langmuir waves into transverse and ion-sound (S) waves, L —
S+F, or the induced scattering of Langmuir wave into F radiation
mediated by thermal ions (i), L +1 — F (Melrose 1985). Which
of the two competing mechanisms, namely, the decay or scat-
tering, is dominant for the fundamental emission has not been
settled conclusively, however. At any rate, under the customary
theory that involves either the three-wave merging or induced
scattering, it is difficult to account for the radiation emission at
third harmonic (3H) or higher (Cairns 1987).

Higher-harmonic emissions accompanying F and 2H emis-
sion have been reported in space environment. 3H emissions
have been reported in type II bursts (Kliem et al. 1992;
Zlotnik et al. 1998) and type III bursts (Takakura & Yousef 1974;
Benz 1973). Multiple harmonic emission up to fifth harmonic
(5H) in the Earth’s foreshock environment has been reported
(Cairns 1986). Various theories have been put forth in order
to explain the higher-harmonic emission. The coalescence of
three Langmuir waves, L+L'+L” — 3H, was suggested for 3H
emission (Kliem et al. 1992), but such a theory obviously can
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only account for 3H emission and is not applicable to the 4H
or SH. Alternatively, the coalescence of a Langmuir wave and
2H EM wave was suggested for 3H emission, namely, L+2H
— 3H (Zlotnik 1978). This mechanism was generalized by
Cairns (1988) to explain higher harmonics including 3H, 4H,
and 5H emissions. According to the scheme by Cairns (1988),
higher-harmonic emission sH is generated as a result of merg-
ing of Langmuir and the adjacent harmonic EM wave (s — 1)H
in a cascading structure of L+2H — 3H, L+3H — 4H, and
L+4H — 5H, and so forth.

An alternative mechanism for the multiple harmonic emission
has been recently put forward by Yi et al. (2007). The new
mechanism involves three-wave interactions among transverse
EM mode and the so-called high-harmonic electrostatic (ES)
nonlinear plasma waves, L+nL — (n+ 1)H (Yi et al. 2007). The
modes designated by nL is the nth harmonic ES mode generated
during the beam—plasma interaction (Yoon et al. 2003). These
modes are nonlinear eigenmodes in that they exist by virtue
of the nonlinear response of the plasma under the influence of
turbulent ES field, and they do not exist in quiescent plasmas.

As briefly outlined above, a number of theories have been
put forward in order to explain the higher-harmonic emissions.
The crucial issue, however, is whether the excitation of 3H and
higher harmonics is even possible in the first place. Unless this
foundational issue is first addressed, say, by means of numerical
simulation experiment, the discussion of the relative efficacy of
the various suggested emission mechanisms may still be subject
to debate. It is the aim of this paper to carry out the detailed EM
particle-in-cell (PIC) numerical simulation in two-dimensional
space in order to demonstrate the high-harmonic emission, and
to verify/test the various theories for high-harmonic plasma
emission on the basis of the simulation results.

There is a large number of theoretical works, simulations, and
a substantial body of experimental literature pertaining to the
problem of beam—plasma interaction. However, numerical sim-
ulations of beam—plasma interaction process that specifically
address the plasma emission have only been performed sporad-
ically. The reason is because the plasma emission simulation
requires at least two spatial dimensions and, more importantly,
it requires full EM formalism that includes radiation. There are
only a handful of fully two-dimensional EM simulation works
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in the literature that address the radiation emission at the fun-
damental and the harmonic of the plasma frequency (Pritchett
& Dawson 1983; Yin et al. 1998; Kasaba et al. 2001). In these
works, the main concern was on the generation of F and 2H
emission only, and the authors did not look for signatures of
3H or higher-harmonic components. As a consequence, none
of the simulations carried out thus far report 3H and higher-
harmonic radiation. Our simulation differs from the previous
efforts in that we resolve 3H and 4H radiation in addition to the
F/2H pair emission. We reiterate that observations of multiple
harmonic emission have been reported in the literature (Reiner
etal. 1992; Zlotnik et al. 1998; Cairns 1986). Consequently, our
work is highly relevant to an important astrophysical problem.

2. SIMULATION SETUP

The simulation was carried out with a two-dimensional
relativistic EM code under periodic boundary condition. The
code resolves two spatial dimensions (two-dimensional) and
three velocity coordinates (3V; Matsumoto & Omura 1993). We
employed 512 x 512 spatial grid, and the total number of time
steps corresponds to 32,768 (=21), or equivalently, #naximum ™~
328a)l;el. Here, wpe = (n.e?/egm,)'/? is the plasma frequency,
with n, being the background electron density, e being the unit
electric charge, and m, being the electron rest mass. The grid
size Ax is taken as Ape, where Ape = (€97, /n.e?)'/? is the Debye
length, and T, is the electron temperature. The unit time step Az
was taken to be equal to O.OIwP’eI. The range of wave numbers

(k) resolved in the simulation is from 0.012A5; to nkgel. The
unit in the computational system is chosen such that ¢y = 1.

The plasma consists of three species: the background elec-
trons, the ions, and the electron beam. The ratio of ion-to-
electron mass, m; /m,, is set close to the realistic value, namely,
1600. Thermal speed of the background electrons is v, = 0.02¢
where c is the speed of light in vacuo, and v, = (T./mo)"? is
the thermal speed. The ion temperature is set equal to one-tenth
of the background electron temperature, 7; = T,/10. The beam
density (n) is 2% of the background electron density, n,; the
beam drift speed v, is chosen to be 0.5¢ (hence, vy /v, = 25);
and the thermal speed associated with the beam distribution is set
equal to that of the background electron thermal speed, v, = v,.
Here, the beam thermal speed is defined by v, = (T,/m.)"/>.
In the previous simulation of a relatively lower beam speed,
0.2¢ (Kasaba et al. 2001), only F and 2H are observed. By
increasing the beam velocity, the present case allows for the
excitation of higher-harmonic modes. We find that at the mini-
mum, vy /c = 0.5 is necessary in order for the higher-harmonic
excitation to take place. It is generally accepted that typical
beam speed associated with type III radio bursts ranges from
0.2¢ to 0.5¢. Thus, vy /c = 0.5¢ is on the high end of this range.
If we take the beam velocity to be higher, then we not only enter
unrealistic parameter regime but also from a theoretical stand-
point we encroach upon the territory of strong turbulence where
the physical interpretation of decay and merging of waves may
not be too meaningful. For this reason, we confine ourselves to
vg/c = 0.5 throughout the present study.

Velocity distribution functions for the background electrons
and ions are assumed to be isotropic Maxwellian, while the beam
electron distribution is modeled by the drifting Maxwellian. The
plasma is weakly magnetized such that the cyclotron frequency
is 1% of the plasma frequency, Q.. = 0.01w,.. In a typical solar
wind, the ratio Qe /wpe is on the order of ~10~2 (Parks 2003).
Hence, this choice represents a fairly typical situation. The
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present simulation employs 21 million background electrons,
2.1 million beam particles, and 21 million ions. We have
assigned one-fifth of the electric charge and mass for the beam
particles, i.e., their charge and mass are (1/5) e and (1/5) m, of
those of the background electrons. That is, each beam electron is
represented by five beam particles. Splitting the beam electrons
to particles with smaller charge and mass while preserving
e/m, is often adopted in typical PIC simulations to enhance
the statistical accuracy (Pritchett & Dawson 1983). Initially,
the background electrons, the beam particles, and the ions are
uniformly distributed.

3. RESULTS

According to the present simulation, the beam—plasma in-
teraction takes place in roughly three distinct stages: the ini-
tial, interactive, and nonlinear phases. The panels on the left in
Figure 1 show the time evolution of the particle energy associ-
ated with the background electrons (E} g ), the particle (kinetic
plus thermal) energy of the beam particles (Epeam), and the elec-
tric field energy (Eg), plotted versus the normalized time wpe?.
The right-hand panels display the x—v, phase space plot at the
times wpet = 20.48, 61.44, and 245.76. These times are in-
dicated by the arrows on the upper left-hand panel. Here, the
normalized spatial coordinate X represents the x-axis in the sim-
ulation box, and the velocity is normalized by the speed of light
in vacuo c.

In the initial phase, energy exchange between the background
and beam electrons as well as the electric field is not apparent
(see the left-hand panels in the temporal range 0 < wpet < 35,
albeit the exact time designation is somewhat arbitrary), as
the two electron species occupy nonoverlapping regions in
the phase space (top-right panel). In the interactive stage
(35 < wpet < 100, again this time designation is somewhat
arbitrary), the beam—plasma interaction is shown to proceed.
First, in this stage, it can be seen that roughly 40% of the beam
energy is transferred to the background electron energy and to
the E field energy. Second, as shown in the phase-space plot
at 61.44 wpet, the beam electrons have spread out in velocity
space, and the characteristic phase-space vortices or whirls that
typify the beam—plasma interaction can be seen to form. In
the nonlinear phase, beyond wp.t = 100, it can be seen that
phase-space vortices have completely randomized. As shown in
the bottom-right plot at 245.76 w,.t, the beam and background
electrons have intermingled in the phase space so that it is no
longer meaningful to distinguish the two species. The plasma
can be said to have entered the genuinely turbulent state.

We next examine the generation of multiple EM radiation
during the beam—plasma interaction process. Figures 2(a) and
(b) respectively show simulated w—k, diagram for ES and EM
modes, by projecting wave intensities along the wavenumber
component parallel to the beam propagation direction (k,-axis).
ES and EM modes were obtained by fast Fourier transformation
(FFT) of E, and B; field over the period ranging from fwp. =
246 to ~328. Frequency and wavenumber are respectively
normalized according to w/wp. and cky/wye. Henceforth, the
spectral intensities in this paper are all normalized with respect
to the electron thermal energy, n.7,, and the intensity level is
indicated by the color bar.

Distinctly visible in Figure 2(a) are enhanced wave intensities
in w—k, space that correspond to the fundamental Langmuir
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Figure 1. Time evolution of the particle (background and beam) energy and E field energy (left-hand panels), and snapshots of the x—v, phase space at 20.48, 61.44,

and 245.76 wpet.
wave and its harmonics. The Langmuir wave dispersion relation,

w/wpe = 1+3k*A3, /2,

is superposed in Figure 2(a) in red. The enhanced intensity at
each harmonic of wp ranging from the fundamental plasma
frequency up to 4w, can be observed. The parallel component
of the phase speed associated with these modes is correlated
with the beam speed,

w/k, = 0.5c,

which is also indicated in red. Yoon et al. (2003) analyzed
such ES harmonic modes in detail, and they showed that
these are nonlinear eigenmodes that exist in turbulent plasmas.
These high-harmonic ES modes cannot escape to free space
in uniform plasmas, and thus they do not directly contribute
to the radiation at multiple-harmonic plasma frequency. Note
that the (fundamental) Langmuir and multiple-harmonic ES
modes possess broad spectra along the k,-axis, indicating that
these modes are incoherent waves. These modes turn out to
be propagating predominantly along the k,-axis, as we shall
confirm this in Figure 3.

Backscattered (fundamental) Langmuir modes that exist in
negative k, space are the result of decay and induced scattering
processes involving either the ion-acoustic mode or the thermal
ions. The generation of a low-frequency spectrum can also be
discerned. We interpret this mode as corresponding to the ion-
sound wave. The presence of the ion-sound mode is often cited
as evidence for the nonlinear decay process, although the decay
may proceed even when the level of ion-sound waves may not
be immediately apparent (Ziebell et al. 2001). In the present
simulation, the excitation of the ion-sound wave indicates that
the backscattered Langmuir wave is produced by the decay
process. We were not able to verify whether the competing
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Figure 2. Numerical w—k, “dispersion relation” generated from Ey (a) and
B, (b) field, plotted in frequency vs. wavenumber along the beam-propagation
direction, at twpe = 246-328.

(A color version of this figure is available in the online journal.)

process of induced scattering off thermal ions is operative or
not since it is difficult to quantify the ion-scattering process
within the present context of the particle simulation.

In addition to the nonlinear ES harmonic modes in the regime

w/k, < 0.5¢c,

also note that 2H, 3H, and 4H E, modes exist in the long-
wavelength regime satisfying the condition

w/k, > 0.5c.

However, these modes are not nonlinear ES harmonics propagat-
ing parallel to the x-axis, but it turns out that they are obliquely
propagating EM harmonic modes. Figure 2(a) is simply the re-
sult of the projection effects. That the EM harmonic waves have
oblique angles of propagation will be confirmed later.
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Figure 3. (a) Peak power associated with E, (w, k) spectrum plotted against the normalized frequency, and plots of the Ej field at frequency in the vicinity of (b) wpe,

(¢) 2wpe, and (d) 3wpe vs. ky and k.
(A color version of this figure is available in the online journal.)

Turning to Figure 2(b), observe the discrete enhancements of
EM wave intensities at multiples of plasma frequency up to 4H
or even SH. It turns out that these EM harmonic modes possess
phase speeds approximately equal to the speed of light in vacuo,
even though they appear to have phase speeds exceeding c. This
is again the result of projecting the two-dimensional results onto
the k,-axis. We have superposed the conventional EM dispersion
relation,

o a)f,e + kzcz,
in the red curve. Portions of EM harmonic modes having parallel
phase speeds in excess of the speed of light,

w/ky > c,

are actually customary transverse EM waves satisfying the
above EM dispersion relation. These modes have oblique
directions of propagation, as will be discussed later.

Portions of EM harmonics satisfying

w/ky <c,

on the other hand, do not satisfy the above EM dispersion re-
lation. Consequently, these modes cannot be discussed on the
basis of the customary textbook theory. Such harmonic EM
waves with short wavelengths and with frequency ~nw,. have
been analyzed by Yoon (1995) and Yoon et al. (2005). These
modes are EM counterparts of the ES nonlinear eigenmodes

discussed earlier. Consequently, Yoon (1995) and Yoon et al.
(2005) have provided essential explanations for the existence of
these modes. However, the analyses by Yoon (1995) and Yoon et
al. (2005) are primarily concerned with the superluminal regime
of the nonlinear EM harmonics, w/k > c, so strictly speaking
the EM harmonics in the subluminal regime, w/k < c, have not
been studied in detail.

Figure 3 consists of four panels. Figure 3(a) displays the
frequency spectrum of the ES mode. Figure 3(a) was generated
by taking maximum intensity along the wavenumber k,, for a
given frequency w. We have then varied w in order to produce
the power spectrum in frequency. This figure is thus a further
projection of Figure 3(a) onto the vertical frequency axis. It
can be seen from Figure 3(a) that ES multiple harmonic modes,
visible up to the sixth harmonic (6H), can be characterized by
a steep power-law spectrum in frequency space. The intensity
of ES harmonics decreases by 2 orders in magnitude for every
increase in the harmonic mode number.

Shown in Figures 3(b)—(d) are plots of electric field E, versus
ky and ky, at fixed frequencies corresponding to wpe, 2wpe, and
3wpe, respectively. Figure 3(b) thus represents the fundamental
Langmuir mode intensity plotted in two-dimensional wavenum-
ber space, Figure 3(c) corresponds to the 2H ES mode, and
Figure 3(d) to the 3H ES mode. The wave spectra were gener-
ated by collecting simulation data during the time period from
wpet = 287 to wpt = 328. Although we have loosely inter-
preted these modes as ES modes they actually possess mixed
EM/ES polarization, particularly for small k values. These
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Figure 4. (a) Peak power associated with B;(w, k) spectrum plotted against the normalized frequency, and plots of the B; field at frequency in the vicinity of (b) 2wpe,

(¢) 3wpe, and (d) 4wpe vs. k, and k.
(A color version of this figure is available in the online journal.)

modes are purely ES only along a line defined by k, = 0 in
the two-dimensional wavenumber space.

Short-wavelength portions of the displayed E, field have peak
wave intensities along k,-axis. This confirms our earlier asser-
tion that fundamental Langmuir and ES nonlinear eigenmodes
are propagating parallel to the beam. However, the E, field near
the origin in two-dimensional wavenumber space that contain
large EM components has peak intensity along small circular
ring structures with increasing radius moving from Figures 3(b)
to (d) (for Figure 3(b) the ring is virtually a dot). These long-
wavelength EM harmonic modes, therefore, do not have parallel
propagation direction, but are in fact oblique modes. We shall
discuss the properties of EM harmonic modes in more detail
later when we discuss Figure 4.

The primary Langmuir wave spectrum shown in Figure 3(b)
has an arc shape, with the wave energy being concentrated in
the range, 1.2 < kec/wpe < 8 and |kyc/wpe| < 8. The width of
the spectrum along the ky-axis is much broader than along
k.. The backscattered Langmuir mode (negative k) is seen
to occupy a broad region although the intensity level is much
lower. The specific range of the backscattered mode roughly
corresponds to —12 < kyc/wpe < —1.2 and |kyc/wpe| < 6. The
backscattered mode has a Gaussian profile rather than an arc
shape spectral distribution.

The wave intensity associated with the 2H ES mode is com-
parable to that of the backscattered Langmuir wave. Forward-
propagating components of both the second and third ES har-
monic modes possess arc-shaped spectra in two-dimensional

wavenumber space. Figure 3(c) shows that the range of the ES
2H mode corresponds to 4.8 < kcc/wpe < 12 and |kyc/wpe| <
13. In the long-wavelength regime (small circular structure near
the center), a quadrupole pattern can be discerned. As noted
earlier, this structure corresponds to the EM 2H mode. The 3H
ES mode lies in the range 7 < kyc/wpe < 16 and |kyApe| < 18
(Figure 3(d)). As with Figure 3(c), the EM component of the 3H
E, field is shown as a ring structure with slightly larger radius.

The 2H and 3H ES modes shown in Figures 3(c) and
(d), have backscattered components, although when projected
onto the k,-axis, these modes are too weak to show up
clearly in Figure 2(a). The theories by Yoon (1995) and
Yoon et al. (2005) cannot yet be extended to discuss such
backscattered harmonic modes. Thus, no satisfactory theory
exists to account for the apparent backscattering of these
modes.

In Figure 4, we represent the EM mode by plotting the B,
field in various formats. First, the frequency spectrum of the EM
mode is shown in Figure 4(a). Multiple harmonic EM emission
up to fifth can be identified. The spectral peak associated with
the fifth harmonic can be distinguished from the background
noise even though it is rather low. The highest wave intensity is
associated with the 2H EM emission, indicating that the plasma
emission should be dominated by the 2H component—at least
for the present set of input parameters. The next significant
emission occurs at the F' component.

Figures 4(b)—(d) display detailed structures associated with
each harmonic EM mode in two-dimensional wavenumber
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space. We have chosen not to display the fundamental emis-
sion spectrum, since the emission pattern appears virtually as
a dot over the range of two-dimensional k vector space. Fig-
ure 4(b) shows the radiation pattern associated with the 2H EM
mode. The enhanced emission is seen to take place along the
circumference of a circular ring spectrum. A careful exami-
nation shows that the angles corresponding to peak emission
correspond to
6 ~45° and O ~ 135°,

in the upper-half two-dimensional k space, and a similar ra-
diation pattern in the lower two-dimensional k space. Lower
quadrants in Figure 4(b) are symmetric when compared with
the upper quadrants. Here, the radiation angle 6 is defined with
respect to the direction of the beam propagation.

Figures 4(c) and (d) correspond to 3H and 4H radiation
emission. These higher-harmonic EM emissions have never
been investigated in previous EM beam—plasma interaction
simulations. Figure 4(c) shows the 3H EM radiation. Note that
the angle of peak radiation occurs along

0 ~27°, ~63° and ~ 153°.

We shall discuss the physics behind such a radiation pattern
later. The 4H EM radiation is shown in Figure 4(d). The peak
emission is observed to take place at angles

6 ~20°, ~40° and ~ 70°.

With the exception of ~70°, the radiation angle is directed
largely parallel to the beam-propagation direction. Note that
backward radiation is practically absent at the 4H plasma fre-
quency.

From the above results, radiation pattern at each harmonic of
the plasma frequency is quite distinct from each other. These
results have an important practical implication in that the power
spectrum of the observed multiple harmonics will be different at
the different measuring positions. According to some reported
observations (Reiner et al. 1992; Zlotnik et al. 1998), the 3H
component is weaker than the 2H radiation. On the other hand,
other observations report more intense 3H emission than the 2H
component (Takakura & Yousef 1974). This conflicting relative
difference in the radiation intensity has been the source of some
controversy (Zlotnik 1978). According to our findings, however,
the relative intensity of the harmonic radiation might be highly
dependent on the measuring angle.

4. INTERPRETATION

We now use the difference in the radiation patterns at multiple
harmonics determined from the present simulation to test
and verify the available high-harmonic radiation theories. The
various theories proposed thus far make their own predictions
regarding the characteristic radiation patterns. Thus, the present
simulation provides a valuable testing ground for the available
theories for higher-harmonic emission.

The 2H radiation theory is well known (Willes et al. 1996;
Yoon 2006). The amplification of radiation is dictated by the
wave kinetic equation

olr(k 2
r(k) 7T6’2 /dk

ar m2w

Sk x K2 (k-K)
k2 k't
x [L(K)I.(k —K) 8 (0f —of —of_y).
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where 17 (k) and I7(k) are the spectral intensities associated
with the Langmuir and EM modes. For isotropic Langmuir
wave intensities, the radiation angular pattern for the 2H
EM mode is determined largely by the transition probability,
(kxK')? (k-K)* ~ sin? 6 cos* 6. (Here, we make the simplifying
assumption of isotropic Langmuir wave intensity for the sake of
simplicity, although Figure 3(b) shows that the actual Langmuir
wave intensity is highly angle dependent.) This shows that the
radiation intensity should be approximately the same for 45°
and 135°. Our simulation shows, however, that the backward
radiation at 135° is slightly more intense than the forward
radiation at 45°. This can be explained by the fact that we have
made the simplifying assumption of the isotropic Langmuir
wave spectrum, when in reality, the Langmuir wave spectrum
is anisotropic. In their numerical study, Willes et al. (1996)
assumed asymmetric forward versus backward Langmuir wave
intensities, which is in agreement with our simulation result.
However, we should note that the Langmuir waves are still
evolving at the end of our simulation and have not reached
the truly stationary stage. Thus, the assumption of isotropic
spectrum may become valid over longer time period than our
simulation time span. In short, the customary theory of 2H
emission is in good agreement with our simulation.

We now test the two theories proposed for the higher-
harmonic radiation. As noted, one theory involves the generation
of higher-harmonic EM modes by merging of Langmuir and EM
waves, L+2H — 3H and L+3H — 4H (Zlotnik 1978; Cairns
1988). The other theory involves the merging process L+nL —
T (Yi et al. 2007). To compare the simulation results with the
theory involving the coalescence of Langmuir and EM waves,
we note that the radiation pattern predicted by this theory is
dictated by the following equation (Zlotnik 1978; Cairns 1988):

o) melwp /

o K (K
a1 C am? Tor " R

Wy Oy
x Ik —K) I7(K) 8 (wf — op — of_) -

2

The 3H radiation at the frequency 3wy, is described by the
interaction between Langmuir and 2H (2wp,.) EM waves. In the
above equation, 3H intensity, I7(k), is obtained by choosing
the value of k vector corresponding to EM wave dispersion
at @ = 3wpe. This leads to [k| = 2+/2wpe/c with frequency
at 3wpe. In the same vein, the |k’| vector for the 2H intensity,
I7(K), is fixed at k' = ﬁwpe /c at @ = 2wyp.. Therefore, the
value of [k — K| lies in the range

V2 V3) < k- K| < ZE2V2+V3).

The term within the large parentheses in the above equation
ranges from 1 to 2 depending on the angular factor (k -
K')?/k%k'’> = cos2(0 — 6'). Here, we have designated 6 and 6’
to denote propagation angles for k and K’ vectors, respectively.
The argument of the Langmuir wave intensity, |k — k’|, must be
determined according to the delta function resonance condition.
The Langmuir wave frequency is practically w ~ wp. over the
entire range so that the delta function is trivially satisfied. Thus,
the remaining factor that plays the key role in determining the
radiation angle is the product of the two intensities, I (k —
K') I (K').

The wave vector associated with the 3H mode k must be deter-
mined when the product of the two intensities, I; (k — k') I (K’),
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is maximum. The maximum peak associated with the Lang-
muir wave occurs at 6 ~ 0° and 180°. The maximum peak
of the second EM wave, on the other hand, takes place when
0 ~ 45° and 135°. If we denote the cosine of the angle asso-
ciated with the vector k — K’ as cos y, and if we represent the
vectors k and kK’ as (k, 0) and (k', 6"), respectively, then we have
cosy = (kcos6 — k' cos0’)/|k — k’|. The magnitudes k and &’
can be estimated to be 2\/5 wpe/c and \/§ wpe /¢, Tespectively,
and |k —Kk’| can be determined to lie between (2+/2 — +/3) Wpe/C

and (2v/2 +/3) wpe/c. From this, we determine that the cosine
angle of the vector k — k’ must be

24/2cos 6 — /3 cos 8’ o o 24/2cos 6 — /3 cos 6’
<cosy < .
2V2+3 2V2 -3 0

Obviously, the absolute values of the lower and upper limits in
the above equation cannot exceed 1. This limitation is implicit
in the above relation.

Let us first consider the case when the wavenumber for the
Langmuir wave, k — K’, has 0° propagation angle, or cosy ~ 1.
Taking into account that the peak angles for k' vector associated
with the second EM wave have two values, namely, 6’ ~ 45°
and 0’ ~ 135°, we immediately see that the angle 6 associated
with the k vector (3H EM mode) having a value ~27° easily
satisfies the relation (1) with cosy ~ 1 for both 8’ = 45° and
0’ = 135°. A similar argument shows that the case of y ~ 180°
or cosy ~ —1 works equally well for both 8/ = 45° and
0’ = 135° as long as 6 ~ 153°.

However, in the case of 8 ~ 63°, relation (1) can be satisfied
only if 6/ = 135° and y ~ 0°. It fails for y ~ 180°, however,
regardless of whether 6’ ~ 45° or 135°.

In short, the mechanism proposed by Zlotnik (1978) and
generalized by Cairns (1988) can qualitatively explain the
radiation emission at 3H when the radiation angle corresponds
to & ~ 27°, 153°. However, for & ~ 63°, the validity of their
theory is somewhat questionable.

The 4H radiation according to Zlotnik—Cairns mechanism
works when the Langmuir and 3H EM mode interacts via
three-wave coalescence. Elementary calculation shows that
K~ 24/2wpe/c with @ ~ 3wy and k ~ +/15wpe/c with
w ~ 4wye. Consequently, the value of [k — k'| lies in the range

e (V15— 2v2) < [k — K| < 22(V/15 +2v2),
¢ c

which is consistent with the simulation result. The cosine angle
associated with the vector k — kK’ must therefore lie in the range
specified by

V15¢c0860 — 2+/2 cos 6’ < < V15cos6 — 24/2 cos 6’
cosy < .
V15+2/2 Y V15 =242 o

Let us first consider the 4H EM emission at angle 20°. Recall
that the choices of y are limited to y ~ 0° and y ~ 180°,
while 6’ is limited to 6’ ~ 27°, ~ 63°, and 153° only. For this
case, combinations of (y, 8”) ~ (0°, 27°) and (y, 8") ~ (0°, 63°)
satisfy relation (2), but other combinations do not work.

In the case of 4H EM emission at & ~ 40°, the only com-
bination that satisfies relation (2) is when (y, 8) ~ (0°, 63°).
No other combined values of y and 6’ can satisfy Equation (2).
Finally, in the case of emission at 8 ~ 70°, there are two possi-
ble combinations of angles that satisfy Equation (2). These are
(y,0) ~ (180°,27°) and (v, ') ~ (0°, 153°).
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Figure 5. Time evolution of (@) electrostatic harmonics L, 2L, 3L, and
backscattered Langmuir wave L', and (b) electromagnetic harmonics 2H, 3H,

and 4H. Yi et al.’s model pertains to the generation of ES harmonics (a), while
Zlotnik—Cairns theory is applicable for EM harmonics (b).

The foregoing discussion again shows that Zlotnik—Cairns
mechanism qualitatively explains 4H emission. In the alternative
theory proposed by Yi et al. (2007), the multiple harmonic EM
emission takes place as a result of three-wave interaction that
involves ES nonlinear harmonics, L+nL. — (n+1)H. The growth
of the harmonic EM wave is dictated by

2 72
al7(k) __me /dk’ k™ (k y k,)z
ot 16 m? C"Se k2

x LK) Ik —K) § (0f — ofF — of_y),

where I,; (k") stands for the wave intensity associated with
the ES nth harmonic mode. In this theory, the overall angular
dependence associated with the radiation at the nth harmonic
is simply dictated by the factor (k x k’)*> multiplied by the
angular distributions associated with the two intensities, 7, (k')
and I;(k — k). Both intensities have peak values when the
propagation angles associated with k” and k —k’ are aligned with
the beam-propagation direction. Some careful analyses reveal
that the radiation pattern predicted by Yi et al. mechanism is not
consistent with the present simulation results.

Up to this point, we have compared the characteristics of the
angle dependence of the multiple harmonic radiation to available
theories. Next, we wish to investigate the correlation between
the ES and EM waves by using time evolution of intensities. The
ES waves (L, L', 2L, 3L) represented by triangles, diamonds,
rectangles, and stars are shown in Figure 5(a), and EM waves
(2H, 3H, 4H) represented by triangles, stars, and diamonds are
shown in Figure 5(b). The intensity of ES waves, except L, does
not change once the linear saturation at the ~100w,.? has taken
place. The almost simultaneous excitation of ES harmonics, as
shown in Figure 5(a), is still somewhat of a mystery, despite
Gaelzer et al.’s (2003) explanation. The intensity of L', which
results from the nonlinear process, gradually increases during
entire simulation time period. These findings are consistent with
earlier works (Klimas 1983; Kasaba et al. 2001).

EM harmonics show entirely different dynamical behavior
when compared to ES harmonics. Figure 5(b) shows that the
intensity of 2H keeps increasing much beyond the L-mode
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saturation. When the intensity of the 2H mode reaches ~1077,
it can be seen that the intensity associated with the 3H mode
begins to increase. Subsequently, 4H mode intensity begins to
be enhanced when the 3H mode intensity reaches ~10~%. This
sequential excitation of higher-harmonic EM radiation when
the adjacent lower harmonic mode has reached a threshold is
nicely explained by the Zlotnik—Cairns process, and is typical
of nonlinear wave—wave dynamics. It is rather clear that the
excitation of the 2H mode is intimately related to the excitation
of L' mode, the excitation of 3H depends on the 2H mode
exceeding threshold intensity, 4H on 3H intensity, and so forth.
As the generation of 2H is a result of L+L’ coalescence, it is
no surprise that the 2H intensity follows the increase in the L’
mode intensity. In the same vein, the 3H mode is generated via
the coupling L+2H — 3H, the 4H mode via L+3H — 4H, and
so forth. This is the essence of the Zlotnik—Cairns process.

Yi et al.’s theory, on the other hand, does not explain this type
of sequential dynamic progression of harmonics generation.
Their theory (which is essentially similar to that proposed by
Gaelzer et al. 2003) does, however, explain why 2L, 3L, ...
should saturate simultaneously with the L mode. In this regard,
Yi et al.’s mechanism explains the result shown in Figure 5(a).
However, one of the consequences of their theory is that multiple
harmonics of the EM mode should also behave in a similar
fashion dynamically, which is of course, at variance with the
present simulation (Figure 5(b)). Therefore, we conclude that
as far as the multiple harmonic EM emission is concerned, the
Zlotnik—Cairns process is a more likely explanation.

5. CONCLUSIONS

The radiation emission at higher harmonics of plasma fre-
quency has been observed in solar and interplanetary envi-
ronment (Kliem et al. 1992; Zlotnik et al. 1998; Takakura &
Yousef 1974; Benz 1973; Cairns 1986). However, the issue of
whether such a phenomenon is even possible in plasmas has
not been resolved. In the present paper, we have thus performed
two-dimensional EM full PIC numerical simulation in order to
address the issue of multiple harmonic plasma emission. We
have demonstrated that multiple harmonic EM emission from
fundamental to SH is indeed possible. Such a finding has not
been reported in the literature, although similar simulations have
been performed in the past. The previous simulations, however,
were only concerned with EM emission at the fundamental and
2H (Pritchett & Dawson 1983; Yin et al. 1998; Kasaba et al.
2001). In contrast, in the present paper we have shown that mul-
tiple harmonic EM emission is indeed possible. Our simulation
also confirmed the excitation of ES harmonics that have been
discussed before by means of simulations (e.g., Klimas 1983;
Kasaba et al. 2001) and theory (e.g., Yoon et al. 2003).

We have tested and verified the competing mechanisms for
multiple harmonic EM emission on the basis of the present
simulation results. These include the mechanism proposed
by Zlotnik (1978) and generalized by Cairns (1988), and an
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alternative model by Yi et al. (2007). From the detailed analysis,
we conclude that, while the theory by Yi et al. adequately
explains the excitation of ES multiple harmonic modes, as far
as the EM multiple harmonic emissions are concerned, it is
the Zlotnik—Cairns theory that better explains the simulation
results. Specifically, we found that the Zlotnik—Cairns model
provides qualitative explanations for the radiation-beam pattern
and dynamical evolution. In contrast, Yi et al.’s mechanism
provides a consistent picture for the multiple harmonic ES
modes, but it does not seem to offer consistent explanation for
the EM harmonic components.
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