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Abstract: This paper is concerned with a new framework called the kernel approximation
approach to the L; optimal controller synthesis problem of sampled-data systems. On the basis
of the lifted representation of sampled-data systems, which contains an input operator and an
output operator, this paper introduces a method for approximating the kernel function of the
input operator and the hold function of the output operator by piecewise constant functions.
Through such a method, the L; optimal sampled-data controller synthesis problem could be
(almost) equivalently converted into the discrete-time Iy optimal controller synthesis problem.
This paper further establishes an important inequality that forms the theoretical validity of the
kernel approximation approach for tackling the L; optimal sampled-data controller synthesis

problem.
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1. INTRODUCTION

There have been a number of studies on sampled-data
systems taking into account of their intersample behavior,
and the disturbance rejection problem has been regarded
as one of the most important issues in the studies of
sampled-data systems. For instance, the Hs problem of
sampled-data systems is dealt with in Bamieh and Pearson
(1992a); Chen and Francis (1991); Hagiwara and Araki
(1995); Khargonekar and Sivashankar (1991); Mirkin et al.
(1999a,b) for evaluating the effect of impulse disturbance
inputs, while the H,, problem of sampled-data systems
is considered in Bamieh and Pearson (1992b); Kabamba
and Hara (1993); Mirkin et al. (1999a,b); Tadmor (1992);
Toivonen (1992) for reducing the energy of the output
for the worst disturbance inputs among those with unit
energy. The main idea in these studies can be interpreted
as providing discretization procedures of the continuous-
time generalized plant by which the Hy or H,, norm
of the discrete-time system obtained by connecting the
resulting discrete-time generalized plant and the discrete-
time controller (approximately) coincides with that of the
original sampled-data system.

On the other hand, these control objectives do not suitably
match control applications such as collision avoidance of
robot systems and protection of chemical systems from
being overly pressured. In this sense, the L; problem of
sampled-data systems, which aims at minimizing their
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Lyo-induced norm, has been brought to the attention
of control community since its control objective effec-
tively matches such applications. However, in contrast
to the cases of the Hy and H,, problems of sampled-
data systems, developing a discretization method of the
continuous-time generalized plant so that the discrete-time
lso-induced norm of the discrete-time system obtained by
connecting the resulting discrete-time generalized plant
and the discrete-time controller (approximately) coincides
with the L.-induced norm of the original sampled-data
system is a non-trivial task. In this regard, the pio-
neering studies on the L; problem of sampled-data sys-
tems (Bamieh et al., 1993; Dullerud and Francis, 1992;
Sivashankar et al., 1992) approximate a sampled-data sys-
tem by a discrete-time system through the idea of the fast-
sample/fast-hold (FSFH) approximation, a technique de-
veloped in another study on the digital redesign of discrete-
time controllers (Keller and Anderson, 1992). Even though
it is shown in these studies that the [,.-induced norm of
the approximating discrete-time systems converges to the
Lso-induced norm of the original sampled-data systems as
the FSFH approximation parameter M tends to infinity,
these studies do not give any explicit result for evaluating
how close the [, -induced norm for a given M is to the
exact value of the L,,-induced norm.

To remedy this, the present authors introduced an inter-
pretation of the FSFH approximation method through the
idea of the fast-lifting technique (Hagiwara and Umeda,
2008), which further led to a more general approach called
the input approximation approach (Kim and Hagiwara,
2014). Through this approach the present authors first
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derived in Kim and Hagiwara (2015a) readily computable
upper and lower bounds of the L..-induced norm of
sampled-data systems. Furthermore, similar results were
established in Kim and Hagiwara (2016b) through a dif-
ferent idea called the kernel approximation approach (Kim
and Hagiwara, 2015b), and this new approach is also based
on the fast-lifting technique which has the parameter M.
Indeed, it was shown in Kim and Hagiwara (2016b) that
even though the associated convergence rates in the ker-
nel approximation approach are qualitatively the same as
those in the input approximation approach, the approxi-
mation errors through the former approximation approach
are smaller than those through the latter approximation
approach under the same fast-lifting parameter M.

Stimulated by the above success of the kernel approxima-
tion approach in the L, analysis of sampled-data systems,
this paper aims at establishing a parallel result in the
L, synthesis of sampled-data systems. In connection with
this, we first remark that the L, synthesis of sampled-
data systems has been studied in Bamieh et al. (1993);
Dullerud and Francis (1992) through the FSFH approxi-
mation, while the latest study (Kim and Hagiwara, 2016a)
is most sophisticated in its use of the fast-lifting treatment
together with the input approximation approach and thus
it could have a much clearer link with the kernel approxi-
mation approach. Hence, this paper aims at extending the
basic ideas in Kim and Hagiwara (2016a) with the input
approximation approach to the kernel approximation ap-
proach and showing that the advantage of the kernel ap-
proximation approach is inherited to the synthesis phase.
More specifically, we confine ourselves, as a preliminary
study, to the piecewise constant approximation scheme
applied to the synthesis via the kernel approximation
approach, and show its advantage over the corresponding
counterpart via the input approximation approach in Kim
and Hagiwara (2016a).

To this end, two types of ‘constant approximations’ for
functions on the interval [0, h/M) are introduced with the
fast-lifting technique (where h is the sampling width), one
for the kernel functions of an input operator and the other
for the hold function of an output operator. Through such
treatment, the L; optimal sampled-data controller synthe-
sis problem is approximately converted into the discrete-
time [; optimal controller synthesis problem. It is further
shown by establishing an inequality that the associated
convergence rate about the approximation errors is in the
order of 1/M. Even though this rate itself remains the
same as that of the input approximation approach, our
arguments show that the former approach can lead to a
smaller approximation error than the latter approach for
the L, optimal controller synthesis problem of sampled-
data systems under the same fast-lifting parameter M.

2. MATHEMATICAL PRELIMINARIES

In this section, we provide some mathematical preliminar-
ies. The notations N, R (p = 1,00) and R(-) are used to
denote the the set of positive integers, the Banach spaces
of v-dimensional real vectors equipped with vector p-norm
and the range of an operator, respectively.

We use the notations || - ||, (p = 1,00) to denote either the
L,[0,h) (p=1,00) norm of a vector function, i.e.,

h
1Ol =3 [ I

[f()lloc := maxesssup | f;(t)]
v 0<t<h
(or those with h replaced by h/M or o), the L,[0,h)-
induced norm (or those with A/M or oo instead of h) of
an operator. On the other hand, the p-norm of a matrix
or a vector is denoted by |- |, (p =1, 00). The distinction
about the same norm symbols for different types of objects
will be clear from the context.

For a Banach space X, its dual space is denoted by X*.
If we let X and Y be Banach spaces and consider a
linear operator T : X — Y, its adjoint is denoted by
T* : Y* — X*. For the given Banach spaces X and Y,
suppose that there exists unique Banach spaces, denoted
by X, and Y, such that their dual spaces (X,)* and (Yi)*
coincide with X and Y, respectively. Then, if there exists
an operator T, : Y, — X, such that (T.)* = T, then T,
is called the preadjoint of T : X — Y. Not every operator
has a preadjoint, but those operators we deal with in this
paper do; it suffices to note that for X = (L[0,h))”
and X = RZ, a unique X, such that (X,)* = X is
X« = (L1]0,h))” and X, = RY, respectively. See Brown
and Tvrdy (1980, 1981); Lindner (2006) for more details.

For a Banach space X, the notation [x is used to denote
the space of all X-valued sequences. F(G,H) denotes
the so-called lower linear-fractional-transformation (LFT)
given by G111+ G12H(I — G22H)_1G21.

3. Ly OPTIMAL CONTROL PROBLEM OF
SAMPLED-DATA SYSTEMS

Consider the linear time-invariant (LTT) sampled-data sys-
tem Ysp shown in Fig. 1, where P denotes the continuous-
time LTI generalized plant, while ¥, H and S denote the
discrete-time LTI controller, the zero-order hold and the
ideal sampler, respectively, operating with sampling period
h in a synchronous fashion. Solid lines and dashed lines
in Fig. 1 represent continuous-time signals and discrete-
time signals, respectively. Suppose that P and ¥ are given
respectively by

T=Ax+Biw+Bau
P: Z:C1(L'+D12’LL
yngac
where z(t) € R, w(t) € R,
R, y(t) € R, ¢p € R, yi
ug (kh <t < (k+1)h).

!p.{warl:A'Ifl/Jk‘i‘BWyk (
N\ue=Cutor+Dyyy

—_
~—

u(t) € R, z(t) €
= y =

(kh) and wu(t)

To facilitate the treatment of the sampled-data sys-
tem Xgp viewed as an h-periodic mapping from w €
L2 to z € L7z, we review the lifting technique as fol-

lows (Bamieh et al., 1991; Toivonen, 1992; Yamamoto,
1994). Given f(t) € LY, its lifting {fx}72q € lzo[o,n)~

w z

—

Fig. 1. Sampled-data system Xsp.
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is defined by fi(0) = f(kh +6) (0 < 6 < h). For
{fi}r20 € l(L.[0,n))v» We simply call

i} oolloo = Sl]ip”.]/t;c”oo (=11l (2)

the l‘[)(i py orm. Similar convention is also applied to that
with h replaced by A’ := h/M foran M e NNIfF: X Y
and either X or Y is Ip_[o,n)», we sometimes call the
induced norm [|F|oo := sup e x\ g0y [[Fzlly /||l x the Loc-
induced norm.

Applying lifting to w and z together with discretizing u
and y leads to the (partially) lifted representation of the
continuous-time generalized plant P described by

Try1 = Aqrr + B1wy + Baguy,
ﬁ : Ek = Cyxi + Dlll/ﬁk + Disup (3)
yr = CoqTi
with zy := z(kh), ur = w(kh) and yr = y(kh), the
matrices

Aqg = exp(4h) : R, — R,
h
Bog = / exp(A40)Badf : R — RY
0

ngZCQZR:O—)RZg
and the operators By, C;, Dy; and D5 defined as

[0,h))™ = RE
(4)

h
B, Gy, = /O exp(A(h — 0))By@y,(0)d0: (Lo

(Cizy)(0) = Crexp(Af)zy : RY, — (Loo[0, h))" (5)
(D114)(0) = / Cy exp(A(—7)) By de(r)dr
(Loo[0,R))™ = (Loo[0, h))" (6)
(Diauy)( / Cr exp(A(0 — 7)) Badruy, + Disuy, :
R™ —s (Lo (7)

The mapplng from {wk}k o to {Zx}2, is derived by

connecting ¥ to the above P, and we denote it by F(P, ¥).
Since the lifting technique is norm-preserving, we can
see that the Lo.-induced norm [|[F(P,H¥S)|le of Xsp
equals ||F(P, ¥)|loo- To derive alternative representation

of ]-"(13, V), let us introduce M; := [Cy Dys], which can
also be defined by

(v [1] ) @ =t expiaan) |1 (5)
where My := [C1 Dig] and Ay := [61 %2} Next, let us

consider the (standard lifting-free) discrete-time plant

Tr+1 = Aaxi + i + Baquy
I 0
Py Cr = [O] Tp + [I] Up 9)
yr = Caquy,

with n, € R and ¢, € R%™ and denote by F(Py, ¥)
the mapping from 7 to ¢ associated with the closed-loop
system obtained by connecting ¥ to the above P;. Then,

F(P, ¥) admits the representation

F(P, W) =M, F(Pys, ")B; + Dy, (10)

Throughout the paper, let us assume that (A, B;) is
controllable and (M, As) is observable.

This paper aims at approximating the operators By, M;
and Dj; by using the idea of the kernel approximation
approach (Kim and Hagiwara, 2015b) and deriving a dis-
cretization procedure of the continuous-time generalized
plant P together with the associated convergence proof. it
would be shown that the kernel approximation approach
would be superior to the input approximation approach in
the Ly synthesis phase of sampled-data systems, as is the
case with the L; analysis problem dealt with in Kim and
Hagiwara (2016b).

4. KERNEL APPROXIMATION APPROACH TO
SAMPLED-DATA SYSTEMS

This section tackles the L; optimal control problem of
sampled-data systems by using the idea of the kernel
approximation approach.

4.1 Review of the Fast-Lifting Treatment of Xsp

For the fast-lifting parameter M € N and h' := h/M,
fast-lifting (Hagiwara and Umeda, 2008) is defined as the
mapping from f € (Leo[0,h))” (or f € (L1]0,h))") to
f= 1) (f(M )" € (Lool0, )MV (or f €
(Ly[0, n"))MY), and is denoted by f = Ly, f, where

FO@) = f(G— D)W +0) (0<0 <K) (1)
Because Lj; is norm-preserving, it readily follows that

[F(P, ¥)lloe = IILarF (P, ¥)Li/ [loo (12)
where the right-hand side means the l[og’ h,)—induced norm
(recall (2) for the definition of the /g, norm).

Applying fast-lifting to @ and Zj in the (partially) lifted
generalized plant P leads to its fast-lifted counterpart

Py = diag[Lyy, 1)1 P diag[Ly}, 1) (13)
Here, it readily follows that Ly, F(P, W)Ly} = F(Pa, ¥),
and it admits the representation

F(Py, W) = LyM F(Py, W)B1Ly} + LyDy Lyt (14)

If we introduce M), B| and D), defined as M;, B;
and Dy, respectively, with the horizon [0, h) replaced by
[0,R), together with the matrices

= exp(AN), Ay =exp(dai), = || s R,

then, as in the standard arguments employing fast-
lifting (Hagiwara and Umeda, 2008), it readily follows that

LyDy Ly = M, AY,B) + D), (15)
LMMI M/ AQL“\/[’ B L];[ — A/MB/ (16)
where
I
:1M = [(1421)]\/[71 I} ) Isz = : (17)
(A )Mt
0 -0
A= 7 (18)
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and (-) denotes diag|(-),
of (+).

The argument of the present paper is considered as a
successive study for our preceding study (Kim and Hagi-
wara, 2016b); in the latter study, the kernel approximation
approach (Kim and Hagiwara, 2015b) is applied to Xgp for
tackling the L; analysis problem of sampled-data systems,
but such a method is restricted to analysis and cannot be
applied directly to synthesis. In other words, this paper
deals the L synthesis problem of sampled-data systems
by applying the kernel approximation approach to Xsp
under the piecewise constant approximation scheme. As a
preliminary step to considering the treatment of Ysp via
the kernel approximation approach, let us introduce the
operators By, and M}, defined respectively as
W
Blyw= A\B, / w(@)d0 + (L]0, B))™ — R
0

-, (+)] consisting of M copies

(19)

(M;O BD @) = M, m R 5 (Lo [0,h7))™ (20)

The above By, corresponds to the zero-order approx-
imation of the kernel function exp(A(h' — 0'))B; =

ALSZ, (7’2I0l)tBl of the operator B/; the subscripts k
and 0 stand for the kernel approximation and the zero-
order approximation, respectively. Similarly, M/, corre-
sponds to the zero-order approximation of the hold func-
tion My exp(A20') = My Y .2, % of the operator M
(which was used also in the input approximation approach
to the L; synthesis of sampled-data systems studied in
Kim and Hagiwara (2016a)).

We consider replacing M} and B with M/, and B,
respectively, together with ignoring D); in (14)-(16).
Then, we have the following approximation of F (P, ¥):
-7'—(13Mk0a ) : = Mo Aogn F(Pas ¥) AgarBio

+ M, AYBi,  (21)
We call it piecewise constant kernel approximation of the
sampled-data system Ygsp, which alleviates the difficulty
in the synthesis of the optimal controller ¥ that minimizes
[F(P, ¥)lloe = I1F(Pas, ¥)|loo-

4.2 Discretization of Continuous-Time Generalized Plant

This subsection provides a discretization procedure of the
continuous-time generalized plant P developed through
the piecewise constant kernel approximation treatment of
Ysp. It converts the synthesis problem of an L; optimal
controller ¥ for the sampled-data system Ygp into the
discrete-time synthesis problem of an I; optimal controller
relevant to the resulting generalized plant obtained by
adequately modifying P, in (9).

To derive such a discretized generalized plant, we consider
replacing the operators B, and M), with appropriate
finite-dimensional matrices. It readily follows from (20)

and (21) that the output of F(Pyo, ¥) is a constant
function determined by the matrix M;. Furthermore, it
readily follows from (19) that the following relation holds,
where a constant function in (Ls[0,h'))™ is denoted by
wq.

{Biow | [[w]loo <1} = {Bigwa | [[wallos < 1}

(22)

This clearly implies that the input of F(Ppko, ¥) can
always be asstAlmed to be a constant function when we
evaluate || F(Pao, ¥)|l (and the action of Bj, can
virtually be described by the matrix A/,Bih’ as seen
by (19)). Thus, ||F(Pasxo, ¥)|lee coincides with the loo-
induced norm of the discrete-time system (ﬁ)tained by
replacing the operators Bi, and M., in F(Pxo, ¥) in
(21) with A, B1h’ and M, respectively. Combining the
above arguments and interpreting the resulting discrete-
time system (as the feedback connection of Prkoq given
below and ¥) leads to the following result.

Theorem 1. Let us consider the discrete-time generalized
plant given by

Tpt1 = Agxr + Bukowy + Baguk

Phrrod : 2zt = Cvxok + Dycorwi + Dycosur (23)
Yk = Cogxy
where
BMkO = A&MA;Blh/ (24)
Dot := My AY, A B (25)
[Crko Darxoz) == My Abgpy
(CMkO c }RMnZXn7 DMk02 c R]V[nzxnu) (26)

Let us denote by || F(Parxods ¥)||co the loo-induced norm
of the discrete-time system consisting of Pykoq and

¥. Then, the I}, -induced norm I F(Prros ¥)|lo coin-
cides with the [ -induced norm ||F(Pprxod, ¥)]|co, i-e.,
| F(Prrkos ) oo = IF (Prrxods ¥)lloo-

Theorem 1 obviously means that the synthesis problem
about igf | F (Parxo, ¥)|lco Obtained by the piecewise con-
stant kernel approximation of Xgp is equivalently con-

verted into the discrete-time [; optimal controller synthesis
problem about i%f |F(Parkods ¥)]|co- Thus, the remaining

task is to construct a theoretical basis of the piecewise
constant kernel approximation for tackling the L; optimal
control problem of sampled-data systems through dealing

with F (ﬁMko, V), which is merely an approximation of
F(Ppr, ¥). To this end, we derive an error bound between
[ F(Pykos ¥)lloc (= [IF (Prkod; ¥)lloc) and [|F(P, ¥)|o,
whose details and implications are discussed in the follow-
ing subsections.

4.8 Error Analysis for Kernel Approximation Approach

This subsection is devoted to providing the error analysis
in the piecewise constant kernel approximation and shows
that the associated convergence rate is in the order of
1/M with the underlying fast-lifting parameter M. To

evaluate the error in the approximation of || F(P, ¥)||s =

||]-'(13M7 )| co by |F(Parrxod; ¥)|| oo, we first introduce the
operators Jig : (Loo[0, )" — (Ls[0,h'))" and HJ, :
(Loo[0,h'))™* — (Leo[0, h'))™= described respectively as

(Jow)(#') := Bf exp(AT (' = 0)W,'Biow  (27)
(Hp2)(0') = 2(0) (0< ¢ <1) (28)
where Wy is the controllability Grammian defined as

hl
W= / exp(A(h —0")) B, B exp(AT(W —6'))d0’ (29)
0
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and its inverse in (27) is ensured to exist by the controlla-
bility assumption of (A4, By). Then, we can see from (19)
and (20) that

Bio =BiJi, My =

H, M, (30)

HGDCG by deﬁnmg JMkO = L Jk07 HMaO = HaoL]\/j

and Dy := MaOA(Z)\/[Bkm it follows from (15), (16) and
(21) that F(Paxo, ¥) can be also represented as

]:(ﬁMko, ¥) = Hpyrao M1 F(Py, ¥)B1J a1 + Dasko (31)

We next introduce ‘finite-rank portions’ of F(Py, ¥) in
(14) and F(Parko, ¥) in (31) described respectively by

FO(Py, W) := Ly M, F(Py, ¥)B{L7}
= F(Py, W) — Ly Dy Ly} (32)
FO(Paro, ¥) = HaraoM1F (Py, ¥)B1Jarco
= -7:(13Mk0a ¥) — Do (33)

It is obvious from the comparison between the above two
equations that evaluating Jpso — L]le and Hpsa0 — Las is
important in the error analysis (and this is why Ji, and
H/,, were introduced in such a way that (30) is satisfied,
so that (21) can be rewritten in the form of (31)). The
following lemma is associated with such an evaluation.

Lemma 2. We have the following properties regarding the
preadjoints Bi, and Jpsko« and the operators M; and
Hsa0-

a) There exists a constant Kpyo such that
< Kxo

- M
where R(Bi,.) denotes the range of Bip, (to which

Ly — Jarkos is restricted) and is viewed as a subset of
(L1]0, h))™.

b) There exists a constant Ko such that

|(Lar — Jarkox) | R8I (34)

Kcio
M

where R(M;) denotes the range of M; (to which Ly, —
Hjo is restricted) and is viewed as a subset of

(Loo[0, h))"

l(Lar — Hazao) revy) loo < (35)

From Lemma 2, we can obtain the following result.

Proposition 3. There exits a constant K, independent of
¥, such that
— FO(Py,

170 (Pasko, )

ICEO FO D
v o < P ; 4 [e'S)
)” =M ” ( M )”

(36)

In comparison between (32) and (33), we see that evaluat-
. 1. . .

ing Do —LasD11L}, is also very important in the error
analysis, for which we refer to the following result (Kim
and Hagiwara, 2016b, Lemma 1).

Lemma 4. There exists a constant K}%o such that
Ky

-1
IDako — LarD11Ly) oo < %

(37)

From Proposition 3 and Lemma 4, we provide the following
main result on the error analysis of the piecewise constant
kernel approximation.

Theorem 5. The following inequality holds:
1= 20 ) 17, ) - Kb < 7 (Bua, )
M ) o] M MkO, 00

1
KkO

0
< (1452 IFP e+ T

Combining Theorems 1 and 5 leads to the following result.

Corollary 6. The inequality holds:

K? 5 Ko
(1 - A;O) IF(P, )0 — 5 < I F(Parcoa; )l oo

0
< (1+80) i me+ S a9)

Remark 1. Through the input approximation approach
under the piecewise constant approximation scheme in Kim
and Hagiwara (2014, 2015a), we could derive the inequality

K 5 K
(1_]\40> | F(P, @)HOO_MOS I F (Pariods ¥) oo

KO K}
1 pP.w n
< (14 50 ) 17 P )+ 5

with appropriately defined discrete-time generalized plant
Phiriog and constants KPO and Kilo. With regards to the
comparison of the 1nequaht1eb (39) and (40), we can show
that the constants KkO and K, introduced in this paper
can be shown to be smaller than K and K}, respectively.
Thus, it is expected that the kernel approximation ap-
proach can lead to a smaller approximation error than the
input approximation approach under the same parameter
M for the L; optimal controller synthesis problem of
sampled-data systems.

(40)

4.4 Validity of Piecewise Constant Kernel Approxzimation

This subsection provides theoretical validity of the piece-
wise constant kernel approximation for tackling the L,
optimal controller synthesis for Ysp by using the argu-
ments in Corollary 6. Let vopt := infy || F(P, ¥)|le and
take an M. Suppose that Wy is an e-suboptimal con-
troller with respect to vasko = i%f IF (Parrkods ¥)|oos i€

| F(Parxod, Tarko)llce < Yo +€ (€ >0). Let My € N be
the minimum such that My > K. Then, for M > My,
the first inequality of (39) implies that

Yoot < |F (P, arco)l|oo

K2 K}
1 kO
On the other hand7 it readily follows frorn the second
inequality of (39) that

Ky Ky
M)
Substituting this into (41) and taking a sufficiently large
M such that M > My, we see that

(41)
(42)

Ymro < (1 +

~ X
Yopt S ||]:(P> yv/MkO)Hoo S Yopt + e+ M (43)
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where

2K Yopt 2Ky Kioe
1- KIEO/MO 1- Kl?o/MO 1- KEO/MO
This obviously means that the performance with a sub-
optimal W0 with respect to i%f |F (Prrxods ¥)|loo (suffi-

X = (44)

ciently close to the infimal performance) converges to that
of the Ly optimal controller for Xsp in the order of 1/M.

5. CONCLUSION

This is the first paper to deal with the use of the kernel
approximation approach in controller synthesis and we
specifically employed the piecewise constant approxima-
tion scheme to give a preliminary study of the L; optimal
control problem of sampled-data systems. With these ap-
proximations, the continuous-time generalized plant P in
the sampled-data system was eventually approximated by
a discrete-time generalized plant. More precisely, we first
established Theorem 1, whose implication is that the L,
optimal control problem of sampled-data systems is ap-
proximately converted into an appropriately constructed
discrete-time [; optimal control problem. Furthermore, to
develop a mathematical basis for the kernel approximation
approach in the L; optimal controller synthesis problem of
sampled-data systems, we next established Theorem 5 or
the inequality (38) through the arguments of preadjoint
operators. This inequality showed that the convergence
rate associated with the kernel approximation approach
is 1/M with respect to the fast-lifting parameter M. Here,
it should be stressed that even though this convergence
rate is qualitatively the same as that in the existing input
approximation with the piecewise constant approximation
scheme, the approximation error through the new kernel
approximation approach is smaller than that through the
existing input approximation approach under the same
fast-lifting parameter M.

REFERENCES

B. Bamieh, and J. B. Pearson (1992a). The H? problem
for sampled-data systems. Syst. Control Lett., Vol. 19,
No. 1, pp. 1-12.

B. Bamieh, and J. B. Pearson (1992b). A general frame-
work for linear periodic systems with application to H>°
sampled-data systems. IEEE Trans. Automat. Contr.,
Vol. 37, No. 4, pp. 418-435.

B. Bamieh, M. A. Dahleh, and J. B. Pearson (1993).
Minimization of the L*°-induced norm for sampled-data
system. IEEFE Trans. Automat. Contr., Vol. 38, No. 5,
pp. 717-732.

B. Bamieh, J. B. Pearson, B. A. Francis, and A. Tannen-
baum (1991). A lifting technique for linear periodic sys-
tems with applications to sampled-data systems. Syst.
Control Lett., Vol. 17, No. 2, pp. 79-88.

R. C. Brown and M. Tvrdy (1980). Generalized boundary
value problems with abstract side conditions and their
adjoints. I. Czech. Math. J., Vol. 30, No. 1, pp. 7-27.

R. C. Brown and M. Tvrdy (1981). Generalized boundary
value problems with abstract side conditions and their
adjoints. I1. Czech. Math. J., Vol. 31, No. 4, pp. 501-509.

T. Chen, and B. A. Francis (1991). Hs-optimal sampled-
data control. IEEE Trans. Automat. Contr., Vol. 36,
No. 4, pp. 387-397.

G. E. Dullerud, and B. A. Francis (1992). L; analysis and
design of sampled-data systems. IEEE Trans. Automat.
Contr., Vol. 37, No. 4, pp. 436—446.

T. Hagiwara, and M. Araki (1995). FR-operator approach
to the Hy analysis and synthesis of sampled-data sys-
tems. IEFEE Trans. Automat. Contr., Vol. 40. No. 8,
pp. 1411-1421.

T. Hagiwara, and H. Umeda (2008). Modified fast-sample/
fast-hold approximation for sampled-data system anal-
ysis. Fur. J. Control, Vol. 14, No. 4, pp. 286-296.

P. T. Kabamba, and S. Hara (1993). Worst-case analysis
and design of sampled-data control systems. I[FEFE.
Trans. Automat. Contr., Vol. 38, No. 9, pp. 1337-1358.

J. P. Keller, and B. D. O. Anderson (1992). A new
approach to the discretization of continuous-time con-
trollers. IEEE Trans. Automat. Contr., Vol. 37, No. 2,
pp. 214-223.

P. P. Khargonekar, and N. Sivashankar (1991). Hs optimal
control for sampled-data systems. Syst. Control Lett.,
Vol. 17, No. 6, pp. 425-436.

J. H. Kim, and T. Hagiwara (2014). Computing the
L [0, h)-induced norm of a compression operator. Syst.
Control Lett., Vol. 67, No. 1, pp. 1-8.

J. H. Kim, and T. Hagiwara (2015a). L..-induced norm
analysis of sampled-data systems via piecewise constant
and linear approximations. Automatica, Vol. 51, No. 1,
pp. 223-232.

J. H. Kim and T. Hagiwara (2015b). Computing the L..-
induced norm of LTI systems via kernel approximation
and its comparison with input approximation. IET
Control Theory Appl., Vol. 9, No. 5, pp. 700-709.

J. H. Kim and T. Hagiwara (2016a). L; discretization
for sampled-data controller synthesis via piecewise linear
approximation. IEEE Trans. Automat. Contr., Vol. 61
No. 5, pp. 1143-1157.

J. H. Kim and T. Hagiwara (2016b). Further results
on the L; analysis of sample-data systems via kernel
approximation approach. Int. J. Control, Vol. 89, No. 8,
pp. 1684-1497.

M. Lindner (2006). Infinite Matrices and Their Finite
Sections: An Introduction to the Limit Operator Method.
Birkh&user, Basel.

L. Mirkin, H. Rotstein, and Z. J. Palmor (1999a). Hs and
H., design of sampled-data systems using lifting. Part
I: General framework and solutions. SIAM J. Control
and Optimization, Vol. 38, No. 1, pp. 175-196.

L. Mirkin, H. Rotstein, and Z. J. Palmor (1999b). Hy and
H, design of sampled-data systems using lifting. Part
IT: Properties of systems in the lifted domain. SIAM J.
Control and Optimization, Vol. 38, No. 1, pp. 197-218.

N. Sivashankar, and P. P. Khargonekar (1992). Induced
norms for sampled-data systems. Automatica, Vol. 28,
No. 6, pp. 1267-1272.

G. Tadmor (1992). H., optimal sampled-data control in
continuous time systems. Int. J. Control, Vol. 56, No. 1,
pp- 99-141.

H. T. Toivonen (1992). Sampled-data control of
continuous-time systems with an H., optimality crite-
rion. Automatica, Vol. 28, No. 1, pp. 45-54.

Y. Yamamoto (1994). A function space approach to
sampled-data control systems and their tracking prob-
lems. IEEE Trans. Automat. Contr., Vol. 39, No. 4,
pp. 703-713.



