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Abstract: This paper focuses on the influence of detailed engineering maturities on offshore
engineering, procurement, and construction (EPC) project procurement and construction cost
performance. The authors propose a detailed engineering completion rating index system (DECRIS)
to estimate the engineering maturities, from contract award to beginning of construction or steel
cutting. The DECRIS is supplemented in this study with an artificial neural network methodology
(ANN) to forecast procurement and construction cost performances. The study shows that R2 and
mean error values using ANN functions are 20.2% higher and 19.7% lower, respectively, than cost
performance estimations using linear regressions. The DECRIS cutoff score at each gate and DECRIS
forecasting performance of total cost impact were validated through the results of fifteen historical
offshore EPC South Korean mega-projects, which contain over 300 procurement cost performance
data points in total. Finally, based on the DECRIS and ANN findings and a trade-off optimization
using a Monte-Carlo simulation with a genetic algorithm, the authors propose a cost mitigation plan
for potential project risks based on optimizing the engineering resources. This research aids both
owners and EPC contractors to mitigate cost overrun risks, which could be continuously monitored
at the key engineering gates, and engineering resources could be adjusted per optimization results.

Keywords: engineering maturities; DECRIS; artificial neural network; trade-off optimization; offshore
mega-project; engineering; procurement and construction (EPC) project; risk mitigation

1. Introduction

Changes in an engineering, procurement, and construction (EPC) project are inevitable. Per the
EPC model, contractors are responsible for procurement and construction risks arising from engineering
maturities which have not been completed during the ‘define stage’ of projects. During the last two
decades, EPC contractors in South Korea have carried out a large number of offshore EPC mega projects.
Over 80 mega-projects including fixed platforms and floaters were ordered to the EPC contractors
amounting to about 70 billion dollars, 15% of the total worldwide capital expenditures for topside
oil production facilities. The Korean EPC contractors encountered numerous changes in the detailed
engineering phases of the projects, often resulting in significant profit losses [1].

According to sample data from one historical project that was completed by a Korean EPC
contractor from 2014 to 2017, approximately 40%~45% of the total project price was for major
equipment and bulk material procurement. In addition, about 20%~25% was for the labor cost of
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construction activities. Therefore, over 60% of the total project cost was related to direct costs of
procurement and construction. In projects that experienced significant cost increase due to growth
in the construction and procurement stage, these cost increases were attributed to a combination of
low engineering maturities and fast-tracking trends of EPC projects. Therefore, EPC contractors must
be aware of the project cost risks before the contract award and/or during the detailed engineering
execution stage.

With regard to the contractual obligations of an EPC contract, EPC contractors accept the single
point of responsibility of both design and construction. Through front-end engineering and design
(FEED) endorsements, EPC contractors are responsible to ensure that project execution will meet
and exceed the clients’ project goals and purposes. After the FEED endorsement, clients typically
do not accept any change orders even though FEED packages have often not been fully matured.
Contradictorily, EPC contractors are not able to transfer these design change risks to the vendors so
any further design change occurring after the equipment supply contract or the bulk material purchase
order is considered as a vendor change order, which should be compensated to the contractor. Most
engineering aspects must be fully defined prior to the procurement of major equipment and bulk
material. We found, for example, that on the aforementioned historical project, client change orders
relative to the vendor change order were less than 20% of the vendor change orders. The remaining
80% had to be covered solely by EPC contractors.

In order to reduce the project risks caused by low engineering maturities on offshore EPC
mega-projects, Kim et al. [1] had developed a qualitative score for the engineering maturities using the
detailed engineering completion rating index system (DECRIS). This was used to predict their impacts
on project construction cost. While it is a valid addition to the general body of knowledge, construction
costs are not the only project cost risks, as procurement cost risks can also have significant impacts.
Therefore, the main purpose of this research is to predict the project procurement cost impact by the
DECRIS framework and to develop a mitigation plan that covers the engineering, procurement, and
construction risks.

1.1. Existing Literature

Existing literature covers critical factors, which cause cost overruns for both domestic and
international construction projects. Shibani and Arumugam [2] studied the factors that lead to
cost overruns in Indian construction projects by surveying of experts in construction fields. They
reported that regular changes of contractors were indicated by 71% of the participants. An analysis
by Hsieh et al. [3] showed that 23.7% of design variation orders originated from issues within the
planning and design stages on 90 historical projects in Taipei. Ssegawa et al. [4] similarly reported
that 45.7% of change orders resulted from either additions and/or omissions in the design, the most
common cause of the project cost growth. The above studies report the importance of detailed
design maturities to reduce additional cost impact on the projects. Kaming et al. identified 16 factors
causing cost impact [5]. Frimpong et al. [6] and Creedy [7] highlighted 24 and 31 factors respectively.
These three studies indicated that inaccurate cost estimate during execution as well as design error
is one of the major causes of cost impact. The above represents the most applicable publications.
The authors performed a holistic review of existing literature pertaining to critical cost impact factors
on international projects. Of the total 30 literature articles reviewed, 57% have also mentioned the
impact of inaccurate cost estimates.

Ibbs [8] studied the quantitative impacts of project changes that contributed at least 30% to
the entire change order. After reviewing over one hundred projects, said publication determined
that 0.34% of productivity decrease and 0.88% of construction labor cost increase could be expected
per 1% of project change. This result means that project change globally affects the project cost
performance, therefore reducing these project changes are one of the key parameters to keeping the
labor productivity high and cost impact low [8]. Wang et al. [9] depicted that the relationship with
clients and engineers is especially important for contractors to deliver EPC project within schedule
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and cost performance. Using different data analysis, they found that design management is critical to
project cost performance. In addition, with successful design management, contractors can also take
long-term business opportunities by demonstrating engineering competence [9].

Table 1 summarizes research studied previously to identify which factors mostly affect the cost
performance of construction projects. Most of them indicate that inaccurate cost estimates at the
bidding stage and design changes during construction are the most critical factors that affect the entire
project cost performance. Previous studies with the main factors highlighted were categorized by
project locations in the various regions, i.e., Australia, East Asia, South-East Asia, Middle Asia, West
Asia, Europe, and Africa.

Table 1. Researches specifying inaccurate cost estimate and design changes as main reason of cost impact.

Authors Project Location Inaccurate
Cost Estimate

Design
Changes *

Thomas and Napolitan [10] - O
Kaming et al. [5] Indonesia O O

Kumaraswamy et al. [11] Hong Kong O
Ssegawa et al. [4] South Africa O

Frimpong et al. [6] Ghana O O
Hsieh et al. [3] Taipei O
Long at al [12] Vietnam O

Elhag et al. [13] UK O
Acharya et al. [14] Korea O O

Arain and Pheng [15] Singapore O
Moura et al. [16] Portugal O
Harisaweni [17] Indonesia O O

Oladapo [18] Nigeria O
Azhar et al. [19] Pakistan O O

Le-Hoai et al. [20] Vietnam O O
El-Razek et al. [21] Egypt O
Enshassi et al. [22] Gaza Strip O O

Ameh et al. [23] Nigeria O
Memon et al. [24] Malaysia O

Mohammad et al. [25] Malaysia O
Rahman et al. [26] Malaysia O O

Halwatura and Ranasinghe [27] Sri Lanka O O
Shibani and Arumugam [2] India O O

Gunduz and Maki [28] - O O
Yadeta [29] Ethiopia O O

Ogunsanmi [30] Nigeria O
Creedy et al. [7] Australia O O

Baloi and Price [31] Developing Countries O O
Iyer and Jha [32] India O O

Dikmen et al. [33] defined the project risks that are associated with construction, design, payment,
client, and sub-contractor (procurement) risk. Publications estimated the overall project risk using a
fuzzy risk assessment. The fuzzy set provides a magnified risk rating for each risk and for overall
project risks. The magnified risks are limited in that the risks cannot be forecasted as a cost unit.
Kim et al. [34] provided the prediction model using a DECRIS framework that estimates construction
cost impacts by assessing detailed design maturities, optimizing the engineering and the construction
impacts. However, the optimization model is limited to the calculation of only the construction impact.
In estimating EPC project performance, the procurement cost impact must also be combined with the
engineering and construction impacts. Yoo et al. [35] studied the importance level of 52 risk elements
through expert survey and weighing the risks for EPC nuclear power plant projects, and concluded that
the schedule of procurement and delivery is the most critical risk factor to project success. By measuring
each risk level, the overall project cost and schedule could be monitored and forecasted [35]. Although
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the risk management in the study was well defined and structured, assessment methods of the risk
rating, however, are qualitative and uncertain. A practical and objective approach to assess the risk
rating is required to enhance the accuracy of cost and schedule performance forecast of the project.

Most of the literature described the importance of the design maturities on estimating contract
prices and performing the EPC execution without fatal design changes, which cause cost impacts
on procurement and construction. In other words, most of the previous research was limited to
the acknowledgement and identification of factors affecting project cost performance without any
development of practical application methods or/and tools to mitigate these interacting factors.
Especially, there is little research so far focusing on engineering management processes for upstream
projects in energy infrastructure to assess and measure the interaction between major gates for EPC
projects, i.e., the maturity (completion progress) level of detailed engineering and procurement for
equipment/material purchasing, and construction initiation.

1.2. Point of Departure and Research Contribution

Kim et al. [1] have previously described use of the DECRIS framework to define important
elements of detailed engineering and correlate these elements to project construction performance.
In addition, Kim et al. [34] suggested the forecasting and mitigation method using DECRIS framework
at five key gates (from FEED verification to construction start). The most significant objective of this
research is to expand the DECRIS framework to procurement cost performance and to determine
any correlation between the DECRIS model and the project procurement performance at these key
engineering gates. This validity of the proposed model’s added value is tested using artificial neural
network (ANN) best-fit curves. Finally, this research proposes potential cost risk mitigation measures
(including engineering, procurement, and construction consequences), using a Monte-Carlo simulation
with genetic algorithm for optimization. This research contributes to industry by providing EPC
contractors a tool which accurately determines procurement and construction risks at the initial stage
and suggests potential mitigation measures, balancing engineering resources based on the assessment
of detailed engineering maturities. With this suggested DECRIS model, project owners and EPC
contractors may be able to monitor the required progress for engineering–procurement–construction
at each engineering gate.

2. Research Methodology

The major purpose of this research is to expand the DECRIS prediction and mitigation model
from construction performance to combine engineering, construction, and procurement performances.
Therefore, the study first builds off the existing DECRIS model, which is correlated to the prediction
and mitigation of the project construction cost and schedule impact.

Figure 1 describes the research procedures used in the application of the DECRIS model in
procurement to a case study based on sample projects and to the model validation. In the DECRIS
model application section, the DECRIS model assigns seven gates: five gates for construction risk
review and another two gates for procurement risk review. The correlation between the DECRIS
calculation and project performance will be reviewed using the ANN model. In the following section,
a case study assessing the capability of the DECRIS model to predict procurement performance for an
offshore EPC mega-project will be performed. To verify the model, a DECRIS cut-off score, which was
confirmed in the previous research, will be reviewed. Finally, the prediction performance of the ANN
model will be discussed. There are three main methodologies applied in this research, as well as a set
of statistical methods such as independent T-test, F-test, and linear regression.
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Figure 1. Research process. DECRIS: detailed engineering completion rating index system, ANN:
artificial neural network.

2.1. Existing DECRIS Model

The methodology needed to calculate the detailed engineering maturities with the DECRIS
framework [1] was previously reported. The DECRIS model consists of 69 major factors called
“elements” that affect detailed design maturities for EPC projects. Using the DECRIS level assessment
of each element at the specific stage of EPC execution stage, the detailed engineering maturity could
be qualitatively calculated within the range of 70 to 1000. A lower DECRIS score means higher
design maturities for the EPC contractor. A correlation between the resulting DECRIS score and the
project construction cost and schedule performance in the fourteen historical projects, which were
completed in South Korea by an offshore EPC contractor, were statistically validated using various
tools such as t-test, linear regression, fuzzy set qualitative comparative analysis, and fuzzy inference
system. Additionally, the DECRIS cut-off score to ensure the project performance was established
as 810, 660, 500, 380, and 300 at the five key engineering gates (i.e., (1) FEED verification, (2) major
equipment procurement, (3) 60% modeling review, (4) 90% modeling review, and finally (5) steel
cutting). A trade-off optimization concept using Monte Carlo simulation was proposed and validated
with case studies [34]. With the DECRIS assessment and optimization, the project owner and the
EPC contractor can monitor the detailed design completion rate affecting the construction risks and
mitigate construction cost risks with the optimization method. The following three equations were
defined in the previous DECRIS research [1,34], and required to forecast engineering, construction and
procurement impacts, as further described in this paper.

Construction labor hours increase rate (CLIR)
= Construction labor hours increased by design change/Planned construction labor hours

(1)

Vendor change order rate (VCOR)
= Vendor change order cost/Original purchase order price

(2)

Engineering resource enhancement rate (ERER)
= Additional engineering labor hours/Planned engineering labor hours

(3)

2.2. Artificial Neural Network

The artificial neural network is an effective tool used to solve various issues related to curve
fitting, prediction, pattern interpretation, clustering, time series forecasting, etc. For example, Kim et al.
adopted the neural network model in estimating construction costs in the construction project fields [36].
In a general manner, ANN consists of a number of neurons, which include input, weight, bias, transfer
function and output [37]. The input data is calculated with weight and bias using a transfer function of
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a neuron (which was empirically decided by a researcher). The weight of each neuron is continuously
adjusted throughout the machine running, which are categorized as supervised learning, unsupervised
learning, and reinforcement learning. If a designated model is not diverse, the weight and the
bias of each neuron will be stable after a sufficient number of iterations of forward propagation
and back-propagation.

The following Figure 2 shows a sample of a multilayer perceptron mode.
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In the previous DECRIS research [1,34], linear regression was used for forecasting construction
cost performance. In some cases, forecast performance of a model could be enhanced with non-linear
regression. In order to increase forecast performance in this research, the ANN model was applied
to find out the best-fit curve between the DECRIS score at the dedicated key gate and the project
actual performance. Multilayer perceptron is a useful tool to perform curve fittings by supervised
learning when researchers know a set of input data and the corresponding labels. When the dataset
was constructed, data normalization processes were required to reduce the number of iterations with
the equation set below. After an initialization process using a set of weights and bias (such as Widrow
and Nguyen), the iteration of the machine learning could be started as the following formula.

Forward propagation

a1
(2) = g(θ11

(1)x1 + θ12
(1)x2 + θ13

(1)x3 + b1)

a2
(2) = g(θ21

(1)x1 + θ22
(1)x2 + θ23

(1)x3 + b2)

a3
(2) = g(θ31

(1)x1 + θ32
(1)x2 + θ33

(1)x3 + b3)

a1
(3) = h(x) = h(θ11

(2)a1
(2) + θ12

(2)a2
(2) + θ13

(2)a3
(2))

(4)

Back propagation

sM = −2h’M(nM)(t − a) and sm = g’m(nm)(Wm+1)Tsm+1, m = M − 1, . . . , 2, 1

θ m(k + 1) = θ m(k) − αSm(am−1)T and bm(k + 1) = bm(k) − αSm

S(2) = −2h’(2)(n(2))(t − a(2)) and S(1) = g’(1)(n(1))(W(2))TS2

(5)

where, ai(j) = activation of unit i in layer j; θ(j) = matrix of weight controlling the function from layer
j to layer j+1; g(x), h(x) = the transfer functions of the output and the hidden layer, respectively;
M = number of layer, k = number of learning, t = corresponding label data, and α = a learning rate
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When curve fitting using ANN, a combination of log-sigmoid (at the hidden layer) and linear (at the
outlet layer) was generally applied [37]. Through the iteration of forward and backward propagation,
sum squared error (SSE) is subsequently decreased up to a stable condition. The performance of ANN
after training is verified with the SSE histogram and with linear regression analysis between outlet
data and actual data. Kim et al. found that a linear regression model could be used for the correlation
function with considerable statistical significance [1,34]. However, in several cases, R2 between the
performance and DECRIS is lower than 0.5. In this research, ANN is adapted to find the better or the
best fit to explain the correlation between DECRIS and actual performance. The target for R2 value
was greater than 0.6 with preferred values up to 0.7~0.8 using ANN curve fitting. The result in the
next section gives the preferable range of R2 value, which was found better than the R2 value found
using simple linear regression.

2.3. Trade-Off Using Monte-Carlo Simulation

Monte-Carlo Simulation is widely used to optimize difficult multi-dimensional models such as
investment cost, resource optimization, priority of the project sequence, and warehouse optimization.
Input variables are set up and deterministic algebraic functions are arranged to calculate an optimum
point. After verification of inlet distribution function such as normal distribution or beta distribution,
simulations are performed with several thousands of iterations. The results are shown as deterministic
value of optimum point and probabilistic ranges of output variables [38].

In this research, total cost impact was calculated with deterministic algebraic function including
construction and procurement cost performance, cost of engineering resource enhancement and cost
deduction caused by enhanced engineering maturities. With series of simulations using commercial
software (at-Risk), a deterministic optimum point of engineering resource enhancement was proposed
and probabilistic ranges of total cost impacts were discussed. The optimum point was rechecked
using optimization with genetic algorithm was also performed to find the exact engineering resource
enhancement and total cost impact value.

3. DECRIS Model for Forecasting Procurement Performances

3.1. Definition of Key Engineering Gates for Major Equipment Procurement

In previous research, five (5) key engineering gates were defined as (1) FEED verification, (2) major
equipment procurement, (3) 60% modeling review, (4) 90% modeling review, and (5) steel cutting.
FEED verification (gate 1) and major equipment procurement (gate 2) were collected for the study of
the influence of engineering maturity on equipment procurement. At the FEED verification session,
the expected VCOR was calculated. The mitigation plan was set to satisfy the required DECRIS value
at gate 2. Engineering maturity at gates 3 to 5, which occurs later than equipment procurement, does
not impact on the procurement cost and therefore was not included in this study.

3.2. Data Collection from Historical Projects

Equipment purchasing data was collected from 15 historical projects. The quantity of the data is
324 items and their total cost amount is about 1.7 billion dollars. In order to review the correlation
between DECRIS and VCOR, purchased cost amount and change order amount were calculated
per each project.

Hagan et al. [37] described that at least 15% of the data should be used for ANN network test
and the selected data shall not be used for learning of the network. Projects E, G, and O were selected
through the random sampling, and DECRIS scores and VCOR results in the remaining 12 projects were
calculated for the network training.

Prior to starting a neural network, linear regressions were performed for brief-checking the
relationship between DECRIS score and VCOR, and R2 values were found as 0.4246, 0.5451 at gates 1
and 2 respectively.
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Table 2 shows the details of DECRIS values and VCOR for 15 projects.

Table 2. DECRIS score and actual vendor change order rate (VCOR) on fifteen historical projects.

Project DECRIS Score
at Gate1

DECRIS Score
at Gate2 VCOR Sampling

A 817 661 4.36% training
B 872 725 22.22% training
C 785 630 7.14% training
D 822 665 12.17% training
E 790 644 1.59% test
F 814 687 13.48% training
G 806 661 4.46% test
H 824 668 3.94% training
I 790 628 2.93% training
J 799 641 5.18% training
K 808 638 2.51% training
L 796 630 8.55% training
M 813 658 7.21% training
N 848 696 7.15% training
O 841 701 8.11% test

3.3. Forecasting Procurement Performance Using Artificial Neural Network

The purpose of using a neural network technique is to find an optimum curve fit that explains
the relationship between engineering maturity (calculated by the DECRIS model) and procurement
cost performance (defined as VCOR). With an appropriate fitting curve, contractors can predict the
project’s procurement cost performance for the major equipment. A multi-layer perceptron model
with supervised learning was selected, and Hebbian learning was used for backpropagation algorithm.
As for linear regression, the input of the network is the DECRIS score and the output is VCOR. There are
two possible methods of data normalization to perform learning through the neural network efficiently,
i.e., by min–max normalization and by Z-score normalization. In this paper, both normalizations
were initially applied. It was concluded that the min-max normalization procedure is better due
to the narrower range of the normalized input data (−1 to 1) than from the Z-score normalization
(−1.07 to 2.49). The next step of the neural network model was to determine the number of neurons.
We first attempted to use the various numbers of neurons (such as 2, 3, 5, and 10) to find the best-fit
model that maximizes R2. We concluded that use of five neurons at the hidden layer (in Figure 3) gave
the best performance. The detailed results are discussed in Section 5. The weight initialization was
performed using the Widrow and Nguyen method as described in the previous section.
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Figure 3. ANN Model for DECRIS vs. VCOR or CLIR.

The log-sigmoid function was selected as the transfer function for the hidden layer and a linear
function was used for the output layer to distribute the result in the range of−1 to 1, as shown in Figure 4.
After 100 iterations were carried out on the 12 project data sets (in random order), the following curve
fit was found after continuous set of ANN iterations and fine-tuning of learning rate to provide the
greatest R2.
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As per the designed neural network model, the following vector formula could be established
as shown in the following Equation (6). Equation (7) also show the learned formula as an algebraic
expression for the relationship between DECRIS score and VCOR at FEED verification (gate 1).

a2 = G(W2F(W1p+b1) + b2) (6)

where, a2 is the calculated VCOR value [1 × 1], W1 [5 × 1] and W2 [1 × 5] are vector of weight factors
of 1st and 2nd neuron layer and b1 [5 × 1] and b2 [1 × 1] are bias of 1st and 2nd layer.

y = 1.075/(1 + e−(1.617x − 2.130)) + 0.929/(1 + e−(1.430x − 2.041)) + 1.088/(1 + e−(1.631x − 2.138)) +

0.239/(1 + e−(0.513x − 1.971)) + 1.467/(1 + e−(2.012x − 2.458)) − 0.893
(7)

where, x is DECRIS score, y is VCOR.

3.4. Forecasting Construction Performance Using Artificial Neural Network

Similarly, the neural network was applied to establishing a best-fit function for the relationship
between the DECRIS score and the project construction performances at each of the five key engineering
gates. The DECRIS score at each gate and the CLIR (which was calculated in the previous study by
Kim et al. [34]) were applied to the ANN model. The repeated learning using 100 iterations with a
learning factor adjustment was carried out, and the best-fit functions found are shown in Figure 5.
Network test result using two test projects and R2 comparison will be discussed later.
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Figure 5. ANN Fitting Curve (DECRIS vs. CLIR) at gate 1 to 5. (a) FEED verification (gate 1);
(b) Equipment procurement (gate 2); (c) 60% modeling review (gate 3); (d) 90% modeling review
(gate 4); (e) Steel cutting (gate 5).

Table 3 specified the SSE value of last five iterations of ANN. For all seven sets of ANN, differences
of SSE between iterations are lower than 0.001, i.e., less than 1% of SSE. As shown in the previous
Figures 4 and 5, the ANN curves were not over-fitted and SSE is converged.

Table 3. SSE value for final five iterations during ANN learning.

Risks Gate
SSE

n-4 n-3 n-2 n-2 n *

CLIR

#1 0.0861 0.0861 0.0861 0.0862 0.0862
#2 0.0967 0.0966 0.0965 0.0964 0.0963
#3 0.0965 0.0965 0.0964 0.0963 0.0963
#4 0.1025 0.102 0.1015 0.1011 0.1006
#5 0.0923 0.0921 0.0919 0.0916 0.0914

VCOR
#1 0.1626 0.1626 0.1626 0.1626 0.1626
#2 0.1633 0.1631 0.1630 0.1628 0.1626

* n is the number of iterations. CLIR: construction labor hours increase rate.
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4. Case Study: Forecasting Cost Performance of an EPC Project at Bidding Stage

4.1. DECRIS Assessments of a Sample Project

In order to review the performance of the ANN functions to define the relationship between
DECRIS scores and the project cost performances, three projects were randomly selected amongst the
15 historical projects, which were DECRIS assessed in the researchers’ previous study, as described in
Section 4. The brief details are shown in Table 4, below.

Table 4. Sample project brief for cast study. EPC: engineering, procurement, and construction.
EPCIC: Engineering, Procurement, Construction, Installation and Commissioning. EPCI: Engineering,
Procurement, Construction and Installation.

Project Project E Project G Project O

Area South-East Asia West Africa South-East Asia
Project type Fixed Platform Floater Floater

Project contract type EPC EPCIC EPCI
Project period 35 months 32 months 39 months

DECRIS score (Gate 1) 790 806 841
Actual VCOR 1.59% 4.46% 8.11%

4.2. Sample Project Performance Prediction (ANN Network Test)

Using the ANN function, the predicted procurement/construction cost performance of major
equipment and the predicted construction cost performance were calculated. Figure 6 shows the
predicted performance and actual VCOR of the Project E, G, and O, as summarized in Table 4.
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Order Rate.

Table 5 describes that ANN forecast value of CLIR and VCOR. On Project G, CLIR values forecasted
by ANN model at gates 1 to 5 were 4.10%, 5.01%, 6.32%, 2.76%, and 6.51%, respectively. On the
other hand, in the same project, VCOR at gate 1 and 2 were calculated as 5.93% and 6.53% as well.
The prediction result shows that the deviations for both CLIR and VCOR were ranged between 0.07 to
0.42 sigma except for CLIR on gate 4. This indicates that the ANN model can properly forecast the
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project procurement and construction cost risks for Project G. The data on gate 4 could be explained by
the time gap of gate 4 (AFC P&ID) and gate 5 (Steel Cutting) on Project G is just 17 days, consequently
the DECRIS score at the gate 4 (360) did not decrease substantially in gate (346). This relatively short
time gap (between gate 4 and 5) on Project G is an offset from the normal project schedule with about a
3 months gap between the gates (i.e., 4 and 5). These results suggest that the project cost risks cannot
be properly mitigated due to the low engineering maturities at the steel cutting session on Project
G. The comparison between Actual versus the ANN forecast model for Project E showed a similar
trend. In more detail, the deviations between Actual and ANN model for Project E showed the range
of −0.27 to 0.71.

Overall, the VCOR deviations for Project E were larger than the ones for Project G, as compared
in Table 5 below. The procurement tracking history for Project E revealed that one major equipment
package was removed as a result of the final detailed engineering, after the purchase order was already
in place. Consequently, the scope reduction should be made in equipment purchasing, which resulted
in the total VCOR for Project E being relatively larger than other projects.

Table 5. Comparison of ANN and actual results on Projects G and E.

CLIR VCOR

Gate Gate 1 Gate 2 Gate 3 Gate 4 Gate 5 Gate 1 Gate 2

Project G

ANN Forecasting 4.10% 5.01% 6.32% 2.76% 6.51% 5.93% 6.53%
Actual 6.02% 6.02% 6.02% 6.02% 6.02% 4.46% 4.46%

Difference 1.91% 1.01% −0.30% 3.26% −0.49% −1.47% −2.07%
Deviation 0.42 σ 0.22 σ −0.07 σ 0.7 σ −0.11 σ −0.26 σ −0.37 σ

Project E

ANN Forecasting 2.87% 3.27% 3.09% Outlier * 4.57% 5.55% 5.34%
Actual 1.61% 1.61% 1.61% Outlier 1.61% 1.59% 1.59%

Difference −1.26% −1.66% −1.48% Outlier −2.96% −3.96% −3.75%
Deviation −0.27 σ −0.36 σ −0.32 σ Outlier −0.65 σ −0.71 σ −0.67 σ

* On Project E, actual date of the gate 4, 90% modeling, are later than gate 5, work order.

4.3. Mitigation Plan Using Trade-Off Optimization

At this point, all datasets to define the mitigation plan were prepared. In order to determine
the optimum point for a trade-off between engineering, procurement, and construction cost impacts,
A Monte-Carlo simulation was performed. Several assumptions were needed to ensure the simulation
model convergence.

1. Input parameters taken from historical projects are distributed as normal distribution. Its appliance
was already verified as shown in the research of Kim et al. [34].

2. Ibbs described that productivity in the design phase is decreased up to 80%~93% of normal
productivity when project changes occur [8]. In this research, 80% efficiency was considered in
case of engineering resource enhancement.

3. The slope of input variables against DECRIS scores is not linear as shown in the previous section
taken by neural network. However, we used the constant slope of the trend line of linear
regression to perform the trade-off optimization.

4. 10,000 iterations were considered per one simulation.
5. For verification purposes, optimization using at-Risk commercial program was also performed

with genetic algorithm.

Three (3) variables were collected. “A” is the ERER, “B” is CLIR and “C” is VCOR. The following
deterministic algebraic formula was set to calculate an optimum point of the trade-off model. At the
specific gate, the cost impact of the VCOR and CLIR is estimated using ANN fitting functions.
The engineering maturities at the next gate are improved if additional engineering resources and labor
hours are committed. In this case, additional cost impacts due to engineering resource enhancement
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are spent and cost deduction on VCOR and CLIR are expected with the faster decrease of DECRIS
values than a normal case. If a slope of VCOR and CLIR deduction is stiffer than a slope of ERER,
the total cost impacts can be reduced. When the engineering is sufficiently matured, the DECRIS
scores are lower and predict a lesser cost impact in procurement and construction. The cost of further
enhancement of engineering resource will be a burden of the EPC contractors. The optimum point
could be expected at the point that the slope of VCOR plus that of the CLIR is the same as for ERER.
The trade-off concept can be described as below.

Total Cost Impact = CVCOR + CCLIR + CERE − CVCORD − CCLIRD (8)

where, CVCOR (Cost of VCOR) = Total Equipment Cost (US$) × C (%); CCLIR (Cost of CLIR) = Total
Construction Labor hours (MH) × B (%) × Construction MH cost (US$/MH); CERE (Cost of ERER)
= Total Engineering Labor hours (MH) × A (%) × Engineering MH cost (US$/MH); CVCORD (VCOR
Deduction) = Total Equipment Cost (US$) × VCOR Deduction due to Engineering Enhancement (%);
CCLIRD (CLIR Deduction) = Total Construction Labor hours (MH) × Construction MH cost (US$/MH)
× CLIR Deduction due to Engineering Enhancement (%)

The trade-off results are shown in Figure 7. The optimal point of total change order for Project E
and G was calculated with genetic algorithm (50% crossover rate, 10% mutation rate, 1000 trials and
10,000 iterations per trial). The simulation was finished when maximum changes within 100 trials
were less than 0.01%. Figure 8 describes the optimization progress through the number of trials.
The total cost impacts of the Project E and G were 3.4 million dollars (at 1.76%) and 3.7 million dollars
(at 1.26%), respectively.
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To check the trade-off optimization in mega EPC projects, the authors selected one more project
sample, the largest project amongst the 15 historical projects as judgment sampling and the same
trade-off model was calculated. Figure 9 shows the probabilistic results of the set of simulations
between 0 to 25% of ERER. The optimum point is around 15.5%. Using a genetic algorithm with
200 trials and 10,000 iterations per trial, the optimum point was calculated. Crossover rate and mutation
rates were set 0.5 and 0.1 respectively. The optimum ERER was simulated as 15.47% with 57.03 million
dollars total cost impact.Energies 2018, 11, x FOR PEER REVIEW  14 of 18 
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From this study, the authors had two major observations. First, the effect of ERER is larger when
higher DECRIS scores at gate 1 (FEED verification) were assessed. Second, three case study results
commonly describe that ERER up to an optimum point could reduce the uncertainty in the total cost
impact. A 95% boundary (1.96 sigma) was narrowed from 70 million dollars (no ERER) to 40 million at
the optimum trade-off point. It can be explained that sufficient engineering resources were essentially
required to decrease cost impacts on the major portion of project costs in procurement and construction.

5. Application and Validation

5.1. Validation of DECRIS Cut-Off Score

Kim et al. [34] explained that the DECRIS cut-off score (to ensure proper construction cost and
schedule performance) could be successfully validated. In this study, DECRIS cut-off scores at each
engineering key gate were rechecked to define a relationship between the project cost performance and
the DECRIS cut-off score. The entire VCOR data on 15 historical projects were selected, and included
of 324 items. This data was divided into two groups, variable 1 (VCOR of the equipment procured
after the DECRIS cutoff score is achieved) and variable 2 (VCOR of the equipment procured before
the DECRIS cutoff score is achieved). At FEED verification (gate 1), 324 items divided with 115 items
in variable 1 and 209 items in variable 2. Through F-test of two samples for variances, P value was
calculated as 0.0000054, much smaller than 0.05. This means that the variance of each sample set is
unequal. In addition, the independent t-test result shows that the P-value of two-tail calculation is
0.016, which is also less than 0.05. Therefore, the two samples that were divided with the DECRIS
cutoff score (810) statistically differ.

The same F-test and T-test were performed at gate 2, and the P-values of F-test and T-test were
calculated as 0.0000063 and 0.038 respectively for the two-sample divided with DECRIS cutoff score
(660). Therefore, DECRIS cutoff scores at gate 1 and gate 2 were validated.
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5.2. Statistical Comparison of ANN and Regression Result

Through the ANN model, correlation functions between DECRIS score and CLIR at the five
key engineering gates and another set of correlation functions between DECRIS score and VCOR at
two key engineering gates was found. For validating the model performance, R2 values and mean
error values of seven ANN correlation functions were compared with the same values of seven linear
regression results.

As shown in Table 6, R2 of linear regression ranged between 0.425 and 0.739 with a mean value,
0.626. The values of ANN function are from 0.611 to 0.796 with a mean value, 0.739. R2 values of
ANN functions are 20.2% higher than linear regressions on average. In addition, the mean error values
at the seven gates using ANN fitting curve were 19.7% lower than linear regressions on average.
The detailed mean error values are summarized in Table 6 below. With two kinds of statistical
parameters, the researchers found that performance of non-linear regression using ANN is superior in
comparison with the previous method.

Table 6. Statistical comparison of ANN and regression analysis for Project G.

CLIR VCOR

Gate Gate 1 Gate 2 Gate 3 Gate 4 Gate 5 Gate 1 Gate 2

R2
(Linear Regression) 0.739 0.731 0.594 0.660 0.686 0.425 0.545

R2
(ANN) 0.771 0.764 0.760 0.792 0.796 0.611 0.681

R2 Increase 4.33% 4.51% 28.0% 20.0% 16.0% 44.0% 24.9%
Mean Error (Linear Regression) 0.242 0.239 0.286 0.228 0.238 0.366 0.314

Mean Error (ANN) 0.203 0.213 0.202 0.181 0.184 0.280 0.268
Mean Error Increase −16.1% −10.9% −29.4% −20.6% −22.7% −23.5% −14.6%

6. Conclusions

6.1. Summaries and Contributions

The objective of this study was to expand the DECRIS prediction and mitigation model from
construction performance to engineering, construction and procurement performances. Using
procurement data for over 300 items in 15 historical EPC mega projects, correlations between
the engineering maturities and actual project cost performances were determined. In addition,
statistical differences of VCOR at the two groups divided by DECRIS cutoff score have proven using
statistical tools.

The predictive function was enhanced with an ANN model, which resulted in 20.2% higher R2

values and 19.7% lower mean error values compared with linear regression. Through a case study
using the ANN model, we found that predicted construction and procurement performances are well
matched with the actual project cost performances in three test projects.

In order to provide the suggestion of DECRIS application to EPC contractors, a trade-off

optimization using Monte-Carlo simulation was performed. The trade-off optimization result showed
that the optimum point of engineering enhancement could be calculated and that the procurement and
construction risks could be effectively mitigated using additional engineering resources to quickly
mature detail engineering and design. The total cost impact could be reduced by about 40% based on
the simulation results. The actual cost impacts of three historical projects were found to be within the
95% range of statistical significance.

The research indicates that the DECRIS model can properly predict the project procurement
and construction risks; and by the use of enhanced engineering resources, the total cost impact on
engineering, procurement and construction activities could be optimized. EPC contractors or clients
can adapt the DECRIS model at the following project activities.
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1. At the bidding session, proposal teams of EPC contractors can review the FEED engineering
maturities using the DECRIS model and can estimate the project procurement and construction
risks as cost units. Then, EPC contractors can decide whether the cost risks are to be taken or to
be incorporated into their bid price as contingency or allowance.

2. On the project starting session, project management teams of EPC contractors can calculate the
optimum range of engineering resources to minimize the cost impact risks during project execution.

3. Before major equipment procurement, purchasing teams of EPC contractors can predict the
VCOR and decide when purchase orders of the major equipment could be placed. If the detailed
engineering is pre-matured and the expected delivery of the equipment has some free float by
comparing a “required on site” date, and then they can adjust the date of the purchase order,
when feasible.

4. At the construction starting stage that is the most important decision of EPC execution, the EPC
contractor’s decision maker can make a macroscopic review of the detailed engineering maturities
and judge “go” or “no-go” decision for steel cutting. If construction cost risks caused by poor
engineering maturities is not within the acceptable range, they can adjust the steel cutting and
continue the engineering progress up to the DECRIS cut-off score.

5. During the early stage of EPC execution, clients can monitor the project risks using the DECRIS
model. Engineering progress or material procurement status shows just the details of EPC
activities; however, it is not easy to project the project cost or the schedule risks with only limited
information. With the involvement of a DECRIS assessment team, they can properly monitor the
engineering, procurement, and construction risks and request mitigation plans to EPC contractors
for reducing DECRIS score over the threshold at each engineering key gate.

6.2. Discussions and Future Research

The authors have tried to make the DECRIS model applicable and sustainable. With an additional
learning process of a neural network, a fitting function to predict the project procurement and
construction performance could be continuously updated using the neural network whenever new
input (project CLIR and VCOR result) comes. In addition, trade-off optimization of total cost
impact is active values along with the engineering key gate and the DECRIS score measured by the
assessment team.

The historical data of the current DECRIS model is limited to the EPC project results from the
offshore mega-project in South Korea. Applicability of the DECRIS model to the other industrial fields
or to the other nations, which have different company organizations or project characteristics, has not
been established. The DECRIS model can be enhanced/developed for a variety of project types with
additional study.
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Abbreviation

ANN Artificial Neural Network
CLIR Construction Labor-hour Increase rate
DECRIS Detailed Engineering Completion Rating Index System
EPC Engineering, Procurement and Construction
ERER Engineering Resource Enhancement Rate
FEED Front-End Engineering and Design
SSE Sum Squared Error
VCOR Vendor Change Order Rate
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