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 

Abstract—This study proposes the detection and removal of 

crosstalk noise using a convolutional neural network in images of 

forward scan sonar. Because crosstalk noise occurs near an 

underwater object and distorts the shape of the object, 

underwater object detection is limited. The proposed method can 

detect crosstalk noise using the neural network and remove 

crosstalk noise based on the detection result. Thus, the proposed 

method can be applied to other sonar-image-based algorithms and 

enhance the reliability of those algorithms. We applied the 

proposed method to a three-dimensional point cloud generation 

and generated a more accurate point cloud. We verified the 

performance of the proposed method by performing multiple 

indoor and field experiments. 

 

Index Terms—crosstalk detection, sonar image crosstalk, 

underwater sonar crosstalk, underwater object detection. 

 

I. INTRODUCTION 

NDERWATER object detection is necessary for autonomous 

underwater vehicles (AUVs) to accomplish various 

underwater missions [1]-[6]. Furthermore, forward scan sonar 

(FSS) is one of the widely used sensors in underwater 

operations [7]-[10]. FSS exhibits a long operating range and 

high resolution compared with other sonar sensors and 

visibility in a turbid and dark environment. Therefore, many 

object detection algorithms using FSS have been developed. 

FSS provides sonar images for its forward scene. Therefore, 

image processing algorithms that detect objects using FSS has 

been used in conventional approaches. Cho et al. [11] detected 

a target object in various angles of view using beam-based 

template matching between a simulated image and an actual 

sonar image. Kim et al. [12] detected an object by combining 

multiple Haar-like features with adaptive boosting. Bennett et 

al. [13] proposed a method for an AUV to track a target using 

adaptive feature mapping. However, in the sonar image, the 

shape of the object changes significantly depending on the 

sonar’s view point. Thus, these algorithms exhibits limited 

accuracy and relatively high false positive rate, especially in 

field applications. 

Thus, algorithms for detecting an object by reconstructing 

three-dimensional (3D) data from sonar images have been 
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proposed. Yu et al. [14] recognized objects by emulating sonar 

images from a 3D model based on ray tracing. Lorenson et al. 

[15] formed the 3D model of an object based on voxels and 

recognized the object by two-dimensional (2D) coding from the 

constructed model. Cho et al. [16] developed a method to detect 

objects by generating the 3D point cloud of underwater objects 

from successive images acquired using an AUV’s mobility. 

The 3D data such as the shape, range, and direction of object 

enable a more reliable object detection. 

However, a characteristic noise, crosstalk, degrades the 

accuracy of sonar-based object detection algorithms. Crosstalk 

occurs inevitably owing to the imaging mechanism of the sonar 

sensor. It occurs near the underwater object and exhibits a 

similar intensity to the highlight of object. Thus, crosstalk noise 

distorts the shape of an object in the FSS. If crosstalk noise is 

removed, AUVs can recognize the objects and environments 

with higher reliability. 

We herein propose a method to detect and remove crosstalk 

noise using a deep neural network (DNN). Recently, the DNN 

has been employed for object detection in sonar images 

[17]-[21]. Because crosstalk noise has its own highlight, the 

DNN can detect crosstalk noise in low-resolution and noisy 

sonar images through its deep architecture. 

Collecting training images is a challenge in using the DNN 

for sonar images. The DNN requires an enormous amount of 

images capturing the target object. In the case of optical images 

in a terrain field, obtaining images involving various shapes of 

the target object is relatively easy because optical cameras have 

become popular and the development of the Internet has 

allowed for copyright-free images to be obtained with small 

cost. Meanwhile, underwater sonar images are typically not 

available to the public. Thus, obtaining sonar images requires 

manual experiments that require significant cost and time. 

Moreover, because the shape of the target object changes in the 

sonar images depending on the environments and the AUV’s 

view point, acquiring sufficient numbers of training images is 

difficult. 

Training the DNN to detect crosstalk noise is easier than 

training the DNN to detect a specific target object. Crosstalk 

noise has a feature that do not depend on the object type, the 

sonar’s viewpoint, and the environment. Thus, the feature used 

to detect crosstalk noise in one sonar image is reusable in other 

sonar images captured in different environments. Furthermore, 

because crosstalk noise occurs frequently, collecting images 

containing crosstalk noise is easier than capturing the sonar 
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images of a specific object. In this study, we obtained 1,173 

images containing crosstalk noise. Using the DNN trained with 

these images, we can detect and remove crosstalk noise in 

various environments successfully. 

We apply the proposed method to a 3D-data-generation- 

based object detection algorithm [16]. This algorithm suffers 

from crosstalk noise as well. Moreover, the highlight of the 

seabed can be misperceived as the object. The proposed method 

removes crosstalk noise and allows for the true highlight of the 

underwater object to be extracted. Thus, the proposed method 

can prevent errors and generate a more accurate 3D point cloud. 

Likewise, the crosstalk-free images generated by the proposed 

method can be utilized in other sonar-image-based detection, 

localization, and navigation algorithms [22]-[26], and enhance 

the reliability of those algorithms. 

This paper is organized as follows: In section II, we explain 

the geometry of the FSS and summarize the 3D object detection 

method proposed by Cho et al. [16]. In section III, we describe 

the causes and characteristics of crosstalk noise and difficulty 

in crosstalk removal using the conventional methods. Section 

IV describes the proposed method to detect and remove 

crosstalk noise. Section V presents the experimental results for 

verifying the reliability of the proposed method. The paper ends 

with the conclusion in section VI. 

II. 3D-DATA-CALCULATION-BASED OBJECT DETECTION 

A sonar image loses the elevation angle of a captured scene 

because of the imaging mechanism used by sonar sensors [27]. 

The sonar sensor generates a sonar image by mapping the 

intensity of acoustic waves according to the distance and 

azimuth angle between the sonar sensor and reflected point. 

Thus, all the points with the same radius and azimuth angle 

around the sonar sensor are mapped as the same point in the 

sonar images. Therefore, restoring the elevation angle is an 

ill-posed problem. 

Cho et al. [16] developed a method to reconstruct the 

elevation information of an object by analyzing sonar geometry 

with the AUV mobility. Furthermore, their method can 

generate a 3D point cloud of an underwater object by 

sequentially capturing the sonar images of the object, 

calculating the elevation information in every frame, and 

mapping the 3D information according to the AUV position. In 

other words, this method can extract 3D data from 

two-dimensional (2D) sonar images. Subsequently, they can 

recognize the underwater target object by comparing the 

calculated 3D data and the ground truth. We applied the 

proposed crosstalk detection and removal method to this object 

detection algorithm to verify the performance of the proposed 

method. In this section, we explain the geometry of the FSS and 

introduce this object detection method in more detail. 

Fig. 1 describes the imaging principles used by the FSS to 

sense an underwater object. First, the FSS transmits multiple 

fan-shaped acoustic waves at various azimuth angles [28] as 

shown in Fig. 1a. Fig. 1b illustrates that one acoustic wave 

forms one column of the sonar image in a single scan. The 

acoustic wave is reflected from the seabed or surface of the 

underwater object and returns to the FSS. Subsequently, the FS- 

 

 
S measures the time-of-flights (TOF) and the intensity of the 

reflected waves. Finally, the FSS generates a 2D sonar image 

by mapping the intensity of the reflected waves according to the 

range and angle [29]. The TOF is converted to the range from 

the FSS to reflected point by multiplying the speed of the 

acoustic waves, and the intensity is converted to a grayscale of 

the image through normalization. The multibeam FSS 

generates a sonar image of size M by N by transmitting N beams 

and mapping the signal measured by each beam into M pixels. 

The method proposed by Cho et al. calculates 3D data from 

2D sonar images by analyzing the geometrical relationship 

between the FSS and underwater object. They first defined 

some terminologies for the FSS image, as shown in Fig. 2. The 

FSS scans the range between rmin and rmax, which are the 

user-defined window sizes. Furthermore, the acoustic waves 

have a finite vertical beam spreading angle s. Consequently, 

when there is no object, the highlights of the seabed is mapped 

to a specific range between the rmin and rmax. This range is 

determined by the sonar tilt and vertical beam spreading angle, 

and defined as remin and remax denoted by 

𝑟𝑒𝑚𝑖𝑛 =
ℎ𝑠

sin⁡(𝑡 +
1
2
𝑠)
, 𝑟𝑒𝑚𝑎𝑥 =

ℎ𝑠

sin⁡(𝑡 −
1
2
𝑠)
, (1) 

where hs is the altitude of the FSS, t is the tilt angle of the FSS, 

and s is the vertical beam spreading angle. Cho et al. defined 

the region between remin and remax in the sonar image as the effe- 

 
(a) FSS using multiple acoustic waves. 

 
(b) Cross-sectional view of imaging mechanism in a single scan of the FSS. 

Fig. 1.  Imaging mechanism used by the FSS 

 
Fig. 2.  Terms for the FSS image. 
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ctive region, and the region outside this range as the ineffective 

region. 

The geometry of the FSS in a particular situation is then 

analyzed to restore elevation of the underwater object. The FSS 

has a sweet spot, where the strength of the acoustic beams is 

concentrated and the signal-to-noise ratio is high, in the 

effective region. Therefore, when observing the object using 

the FSS, locating the object and its complete shadow in the 

sweet spot is preferable for an ideal identification [30], [31]. 

However, the authors focused on the situation where the 

underwater object exited the effective region. As shown in Fig. 

3, the FSS scans the underwater object sequentially as it 

approaches the object. When the FSS is closer to the object than 

a certain distance, the reflection on the object occurred earlier 

in the slant range than the seabed, and the highlight is mapped 

in the ineffective area, named “highlight extension.” As the FSS 

approaches the underwater object closer, the highlight 

extension increases until it reaches the critical point where the 

reflection occurs on the frontmost and uppermost of the object. 

The critical point is determined by the sonar tilt, vertical 

beam spreading angle, and height of the object. Thus, the 

elevation information can be restored by measuring the length 

of the highlight extension at the critical point. Fig. 4 shows the 

condition at the critical point in three dimensions. We can 

calculate the position of the point on the object scanned by the 

jth acoustic beam (xobj(j), yobj(j), zobj(j)) as 

𝑥𝑜𝑏𝑗(𝑗) = 𝑥𝑠 + 𝑟𝑐(𝑗)√1 − 𝑠𝑖𝑛2(𝜃(𝑗)) − 𝑠𝑖𝑛2 (𝑡 +
1

2
𝑠) , (2) 

𝑦𝑜𝑏𝑗(𝑗) = 𝑦𝑠 + 𝑟𝑐(𝑗) sin(𝜃(𝑗)),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (3) 

𝑧𝑜𝑏𝑗(𝑗) = ℎ𝑠 − 𝑟𝑐(𝑗) sin (𝑡 +
1

2
𝑠),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (4) 

for 1 ≤ j ≤ N, where j is the index of acoustic waves in the FSS, 

(xs, ys, hs) is the position of the FSS, rc(j) is the distance between 

the FSS and the reflection point at the critical point, and θ(j) is 

the azimuth angle of the jth acoustic beam. 

Through (2)–(4), we can calculate the 3D data of the object 

only if rc(j) is obtained. The FSS maps [rmin, rmax] into [1, M] 

pixels. Thus, we can calculate rc(j) by extracting the pixel 

coordinates of the extended highlights in the sonar image using 

the following equation: 

𝑟𝑐(𝑗) = 𝑟𝑚𝑖𝑛 + (𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛)
𝑝𝑐(𝑗)

𝑀
,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 

for 1 ≤ j ≤ N, where pc(j) is the row pixel index of the extended 

highlight in the jth column of the sonar image. 

Finally, the authors extracted extended highlight in the 

ineffective region by applying a difference filter D such as (6) 

and selecting pixels that exceed a threshold value. 

𝐷 = [
−1 −1 ⋯ −1
0 0 ⋯ 0
1 1 ⋯ 1

]

3⁡×⁡𝑁

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

III. DIFFICULTY IN OBJECT DETECTION IN THE FSS 

A. Problem Statement 

Many object detection algorithms using FSS images can be 

degraded by two primary factors: crosstalk noise and 

ambiguous highlight. Crosstalk noise occurs near the object and 

has its own highlight. Thus, crosstalk noise distorts the 

highlight of one object and hides the shadow of neighboring 

objects, both of which are important sources for identifying the 

objects. The seabed has its own highlight as well; therefore, 

distinguishing the true highlight of the object is difficult. This is 

named the ambiguous highlight problem. 

The method proposed by Cho et al. [16] was degraded by 

these two factors as well. They used a simple difference filter 

when extracting the highlight of the object to handle FSS 

images containing scanty information. The difference filter 

extracts the highlight from an image by detecting the sudden 

change in pixel value from dark to bright or from bright to dark. 

However, this approach may not well distinguish the highlight 

of crosstalk noise and the seabed from the highlight of the 

object. In this section, we discuss the crosstalk noise and 

ambiguous highlight in more detail and how these two factors 

cause errors in the algorithm. 

B. Crosstalk Noise 

The FSS is a multibeam sonar, and crosstalk is noise that 

typically occurs near an underwater object in a multibeam sonar 

image. Multibeam sonar uses a sonar array and transmits 

multiple acoustic waves to scan a region, not a line. To prevent 

interference among the waves, the multibeam sonar transmits 

each waves at a time interval. Thus, ideally, each receiver in the 

sonar array receives the reflected beam from the corresponding 

transmitter, as in Fig. 5a. However, the time interval required to 

obtain images at a high frame rates is a few milliseconds. 

Therefore, as shown in Fig. 5b, adjacent receivers may 

incorrectly receive the strong reflection that occurred on the 

surface of the underwater object and returned to the FSS in a sh- 

 
Fig. 3.  Highlight extension according to movement of the FSS. 

 
Fig. 4.  Calculation of object height using highlight extension in the local 

coordinate system of the FSS. 
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ort TOF. This condition causes the highlight to spread around 

the object and is called crosstalk noise. 

Distinguishing the true highlight of an object from crosstalk 

noise is difficult as crosstalk noise contains highlight as well. 

Therefore, the difference filter extracts a highlight wider than 

that of the object, as shown in Fig. 6. Crosstalk noise in the 

sonar image should be filtered to detect underwater objects 

more accurately. 

Because the acoustic signal causes crosstalk noise, the 

conventional approach for crosstalk noise reduction in the 

sonar image is to use signal processing techniques [32], [33] 

through the following steps: First, the sonar image is divided 

into acoustic signal components using transformations such as 

Fourier transform or wavelet transform. Next, among the 

acoustic signal components, the acoustic signal that causes 

crosstalk noise is identified and filtered. Finally, a 

crosstalk-free image is generated by transforming the signals 

back to the spatial domain. Additionally, [34], [35] provide 

examples of crosstalk noise elimination using these 

approaches. 

However, the methods, based on signal processing, exhibit 

limitations. Developing a general and automatic algorithm that 

identifies the crosstalk signal can be difficult owing to two 

reasons: First, the characteristic of the signals that construct the 

sonar image can vary for each image according to the 

environments where the image is captured. Next, because the 

conventional methods process the entire image, every pixel in 

the image is affected when applying signal processing. 

Consequently, these methods can cause undesired effects, such 

as information loss. 

To remove crosstalk noise more accurately, we address 

several of its characteristics according to its cause of 

occurrence. First, a strong reflection of acoustic waves causes 

crosstalk noise; thus, crosstalk noise occurs primarily near the 

object. Next, the misperception of adjacent receivers causes 

crosstalk noise. Therefore, crosstalk noise exhibits a slightly 

lower intensity compared with the true highlight of the object. 

Finally, several adjacent receivers may incorrectly receive the 

reflected waves. As the adjacent receiver is farther from the 

corresponding receiver, the acoustic wave travels longer; thus, 

the intensity of the wave becomes weaker according to a 

parabolic curvature. Consequently, crosstalk noise exhibits a 

characteristic gradation pattern. 

From these characteristics, several image processing-based 

methods to remove crosstalk noise have been used. Crosstalk 

noise occurs near an object when the periphery region is darker. 

Thus, in some studies [22], [36], crosstalk noise was removed 

by tracking the highlight and shadow of an underwater object 

from a frame where no crosstalk noise appears. However, this 

method presents two limitations. First, in sonar images, objects 

appear differently depending on the distance and viewpoint; 

therefore, identifying the exact highlight of the object is 

difficult in the current frame, even if the object is being tracked. 

Next, this method requires sequential frame information and 

causes additional computation. 

Eliminating crosstalk noise using thresholding has been 

performed, because crosstalk noise exhibits a slightly weaker 

intensity compared with the highlight of the objects. However, 

the intensity value of crosstalk noise varies depending on the 

various factors such as the material of the underwater object, tilt 

angle of sonar sensors, and the captured scene. Therefore, the 

intensity of crosstalk noise in sonar images may be different in 

every experiment. Furthermore, the intensity of crosstalk noise 

can be different even in sequentially captured images. 

Consequently, setting a general threshold that can filter 

crosstalk noise is difficult, as shown in Fig. 7. Figs. 7a and 7b 

show the FSS images of the same object. Moreover, these 

images were captured at intervals of a few frames in the same 

scanning trial of the object. However, because the intensities of 

crosstalk noise were different in the two images, eliminating 

crosstalk noise using the same threshold value was not success- 

 
(a) Sonar beam array of the FSS. 

 
(b) Reflection occurring on the surface of the underwater object 

Fig. 5.  Cause of crosstalk noise in the FSS. 

   
(a)                         (b)                        (c) 

Fig. 6.  Crosstalk noise that causes errors in 3D data calculation. (a) Crosstalk 

noise in the FSS image, (b) Crosstalk noise in the ineffective region, (c) 

Incorrectly perceived crosstalk noise as the object by the the difference filter. 
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ful. When using 110 as the threshold value, we could remove 

crosstalk noise in one image, as shown in Fig. 7d. However, 

crosstalk noise still appeared and degraded the image in Fig. 7c. 

Moreover, the intensity level of crosstalk was similar to that 

of the highlight from the seabed. The intensity of crosstalk 

noise immediately next to the underwater object is similar to 

that of the object. Thus, setting an appropriate intensity value is 

difficult. As shown in Fig. 8, a low threshold value cannot 

eliminate crosstalk noise properly. On the contrary, setting a 

high threshold value may remove valuable information such as 

the highlight of the seabed and that of the underwater object. 

Therefore, the detection of crosstalk noise should precede for 

the accurate and efficient elimination of crosstalk noise. 

Detecting which part of the image is crosstalk noise is 

necessary to analyze the characteristics of crosstalk noise such 

as intensity values and patterns. Furthermore, we should detect 

the region where crosstalk occurs and process only the detected 

region to maintain other valuable information such as the 

highlight of the underwater object or seabed. 

We present object detection techniques to detect crosstalk 

noise in the FSS images. Although crosstalk is a type of noise, it 

has its own highlight and shape. Furthermore, crosstalk noise 

exhibits the characteristic gradation pattern. Therefore, 

extracting features which allows to detect crosstalk noise is 

possible. 

However, the conventional feature-based object detection 

algorithms did not perform well for detecting crosstalk noise in 

the given underwater sonar images. The sonar image is of 

low-resolution and has low signal-to-noise ratio. In other words, 

the sonar image contains scanty information. Therefore, it is 

difficult to extract low-level features and recognize highlights 

in the sonar images. Moreover, although the gradation pattern 

of crosstalk noise appeared similar, other characteristics such as 

intensity and size varied depending on the environment such as 

object type and setting of the FSS. 

Fig. 9 shows the limitation of crosstalk noise detection using 

the conventional object detection algorithms. Fig. 9a shows the 

result of applying the speeded-up robust features (SURF) 

algorithm [37]. We thought that the SURF feature is suitable for 

the sonar image as it is robust to image blurring. However, we 

failed to extract the SURF feature from crosstalk noise, as the 

FSS image contains a faint highlight and the contrast is not 

large. Furthermore, we used the KAZE feature [38] in Fig. 9b. 

The KAZE feature extracts features in a nonlinear scale space; 

therefore, it can handle low-resolution and noisy sonar images. 

However, owing to scanty information, the KAZE features 

extracted in the whole image did not match with the features 

extracted in crosstalk. 

C. Ambiguous Highlight 

The method to restore the 3D information of the underwater 

object is based on the concept that underwater objects protrudes 

from the seabed. Therefore, the highlights in the ineffective 

region are regarded as the object. To find the ineffective region, 

remin is calculated by (1) using the altitude and tilt angle of the 

FSS. 

However, the field conditions are not always ideal. The 

acoustic waves are scattered and the seabed is not flat. 

Therefore, the highlight of the seabed may also appear in the 

ineffective region. Moreover, the highlight of the seabed is 

similar to that of the underwater object and is difficult to be 

distinguished from the true highlight of the object. We call this 

condition the ambiguous highlight. Fig. 10 describes the ambi- 

    
(a)                          (b)                          (c)                          (d) 

Fig. 7.  Difficulty in crosstalk elimination using the threshold. (a) and (b) 

Original image of the same object, (c) and (d) Images obtained for the 

threshold value of 110. 

 
Fig. 8.  Difficulty in crosstalk elimination using the threshold. 
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guous highlight. The upper white horizontal line in Fig. 10a 

represents remin. Although no object exists on the seabed, the  

 
highlight of the seabed is extended in the ineffective region, 

such as in Fig. 10b, and the difference filter detects the seabed 

as the object, as shown in Fig. 10c. This incorrect information 

causes an error in the shape of the generated 3D point cloud. 

Thus, ambiguous highlights should be classified and the 

highlight of the seabed should be filtered to generate accurate 

3D data. 

IV. CROSSTALK DETECTION AND REMOVAL USING DNN 

In this study, we propose a method to detect and remove 

crosstalk noise and ambiguous highlight that cause errors in 

detecting the highlight of an object in an ineffective region, as 

shown in Fig. 11. After removing the highlight of the crosstalk 

noise and seabed, we can identify the true highlight of the 

object. Subsequently, by applying the proposed method to the 

algorithm [16], we can calculate the accurate 3D data and 

recognize the underwater object. Moreover, the crosstalk-free 

images generated by the proposed method can be utilized in 

many sonar-image-based algorithms and enhance the reliability 

of those algorithms. 

The detection of crosstalk noise is necessary for the accurate 

and efficient elimination of crosstalk noise. We introduced the 

DNN for the detection according to the characteristics of 

crosstalk noise. Crosstalk noise exhibits a parabolic gradation 

pattern. Further, this gradation pattern appears almost the same 

regardless of the environment such as in Fig. 12. Figs. 12a and 

12b show the FSS images of the same brick. Although two 

images are captured in different sonar tilt angles and distances, 

a similar pattern is observed near the object. Crosstalk noise 

occurred similarly in the sea next to natural terrains such as 

rocks, as shown in Fig. 12c. Therefore, the DNN can detect 

crosstalk noise from a single given sonar image using this 

gradation pattern as a feature. 

Next, the DNN is used to classify the ambiguous highlight 

into the highlight of the object, seabed, and crosstalk noise. The 

DNN exhibits an outstanding performance in object 

classification. Using its deep structure, the DNN can 

distinguish slight differences among ambiguous highlights and 

classify them into a seabed and object. 

If the DNN detects the region where crosstalk noise occurred, 

we then apply crosstalk noise removal on the detected region. 

  
(a)                                                        (b) 

Fig. 9.  Difficulty in feature-based object detection. (a) Feature extraction and 

matching using SURF feature, (b) Feature extraction and matching using 

KAZE feature. 

 
Fig. 10.  Ambiguous highlight problem. (a) Highlight of the seabed, (b) 
Highlight of the seabed that extends in the ineffective region, (c) Seabed 

mis-detected as the object by the difference filter. 

 
Fig. 11.  Crosstalk noise and ambiguous highlight in the FSS image. 
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By applying the removal on the detected region, important 

information of the other areas are preserved. Furthermore, an 

accurate removal is possible by analyzing the characteristics of 

the detected crosstalk noise. 

Finally, we applied the proposed method to the 3D 

reconstruction-based object detection algorithm. Because 

peripheral highlights such as crosstalk noise and seabed are 

removed, we can obtain more accurate 3D data to recognize the 

underwater object. In this section, we explain three parts: the 

DNN to detect crosstalk noise and classify ambiguous highlight; 

the method to remove crosstalk noise using the detection result; 

and the method to calculate accurate 3D data using the 

proposed method. 

A. Convolutional Neural Network 

Among various DNNs, we used the convolutional neural 

network (CNN) to detect crosstalk noise and classify 

ambiguous highlights in given sonar images. The CNN has 

demonstrated outstanding performance in object detection and 

classification. Unlike the conventional low-level feature-based 

object detection algorithms, the CNN produces high-level 

features by pooling the extracted feature through its deep 

architecture. Thus, the CNN can detect crosstalk noise even 

from low-resolution and noisy sonar images. 

The algorithms used in the AUVs require fast processing 

speed and low computational complexity for three reasons. 

First, the AUVs have limited battery capacity; thus, they must 

limit their power consumption. Next, conducting underwater 

experiments with AUVs is time consuming and expensive. 

Finally, recording the absolute location of the AUVs is difficult 

because localization equipment such as GPS does not function 

underwater. Therefore, underwater experiments exhibit low 

reproducibility. Thus, we attempted to develop a real-time 

method to detect and remove crosstalk noise. 

Among the CNNs developed for object detection, we 

adopted the “You Only Look Once (YOLO)” proposed by 

Redmon et al. [39]. Unlike the conventional two-stage CNN for 

object detection such as the fast R-CNN [40] or faster R-CNN 

[41], YOLO is a unified CNN. The single CNN selects the 

candidate region and classifies the selected region 

simultaneously. Thus, YOLO recorded a real-time processing 

speed of over 45 frames per second for the terrestrial images. 

Despite this fast processing speed, it recorded a high detection 

accuracy that is not less than that of the existing 

object-detection CNN. 

The YOLO network comprises three versions. The latest 

version is YOLOv3 [42]. The YOLOv3 recorded the highest 

detection accuracy with state-of-the-art techniques such as 

batch normalization, anchor box, and multiscale prediction. 

Thus, we adopted the architecture of YOLOv3. However, 

because the underwater sonar images have lower resolution and 

contain less information compared with the terrestrial images, 

we modified some layers. Fig. 13 shows the architecture of the 

CNN we used. The CNN consists of 59 convolutional layers. 

For every convolutional layer, batch normalization [43] is 

applied and the activation function is leaky ReLU. Compared 

with the original architecture [42], we reduced the size of the 

input layers. Furthermore, we reduced the filter size of the last 

convolutional layer that makes final prediction of the class 

probabilities and bounding box into one-fourth. 

Subsequently, we trained the CNN using a custom underwat- 

 

   
(a)                               (b)                              (c) 

Fig. 12.  Crosstalk noise occurring in various environments. (a) and (b) 

Crosstalk noise around a brick, (c) Crosstalk noise around natural terrain of 

sea. 

 
Fig. 13.  Architecture of the CNN in the proposed method. Conv is convolutional layer. 1x1 or 3x3 is the size of the convolutional layer, f means the filter depth of 

the convolutional layers, and s means stride of the convolutional layers. 
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er sonar image dataset. We used supervised learning to train the 

network to detect the crosstalk noise and highlight of the seabed 

in the given sonar images. For supervised learning, we should 

provide the bounding box data of the target object as a label for 

the CNN. We manually cropped the crosstalk noise and seabed 

in the FSS image and recorded the x and y coordinates, width, 

and height to generate the training data. 

Labeling the image such that the characteristics of the target 

objects are clearly visible is important to improve the detection 

accuracy of the CNN. Fig. 14 illustrates the labeling process. 

We addressed that crosstalk occurred on both sides of the 

underwater object. Therefore, when we cropped the bounding 

box of crosstalk noise, we created the bounding box to include 

the left or right boundary of the highlight of the object. 

Subsequently, the CNN would detect the crosstalk region 

including the underwater object after the training. We could 

solve this problem by verifying the intensity of the left and right 

boundaries and reducing the size of the detected bounding box. 

Next, because the acoustic waves spread out from the FSS in a 

fan shape, the edge of the seabed appeared as an arc in the FSS 

image. We cropped these arc-shaped edges and labeled them as 

the seabed. 

Consequently, the trained CNN receives a single FSS frame 

as input. Subsequently, the CNN detects crosstalk noise and 

seabed in the image, and outputs the position and size of the 

region of the crosstalk noise and seabed. 

B. Crosstalk Noise Removal 

After the CNN detects the region where crosstalk noise 

occurs, we remove crosstalk noise by applying 

image-processing algorithms on the detected region. We can 

remove crosstalk noise by simply converting the detected 

crosstalk noise into a shadow. The CNN we built detects 

crosstalk noise in the ineffective area. If no object exists, 

highlights do not occur in the ineffective region. Moreover, 

crosstalk noise may not be visible if the seabed or another 

object exists behind the crosstalk noise. Because these objects 

cause strongly reflected waves, the receiver of the sonar sensor 

can receive the reflected wave from its corresponding 

transmitter, instead of misreceiving it from the adjacent 

transmitter. In other words, the region detected by the CNN 

where crosstalk noise occurs is originally a shadow. Thus, we  

 
can remove crosstalk noise by simply converting the pixels in 

the detected region into a shadow. 

We propose two methods that transform the detected 

crosstalk noise region into a shadow. The first method is 

inpainting. This method eliminates crosstalk noise by filling the 

detected region with adjacent pixel values that are also the 

shadow. Fig. 15a illustrates this method. When the CNN 

detects the crosstalk, the algorithm searches for the adjacent 

region of the same size with the detected bounding box. 

Subsequently, the algorithm verifies if the searched area is a 

shadow by comparing the average pixel value in the area and a 

threshold value. Threshold value is determined dynamically 

according to the pixel intensity of the detected crosstalk noise. 

The algorithm subsequently copies the pixel values of the 

selected area and paints the pixel values on the crosstalk noise 

region. Because repainting may cause the images to appear 

unnatural, we applied Gaussian smoothing on the boundary of 

the repainted region as the final step. The second method is 

intensity adjustment. This method mitigates crosstalk noise by 

multiplying a small weight value w in each pixels in the 

detected crosstalk noise region. The value of w is also 

determined by analyzing the pixel intensity of the detected 

crosstalk noise. Fig. 15b shows the flowchart of this method. 

After the CNN detects the crosstalk region, the algorithm 

multiplies w for each pixel value and constructs new images. 

The result of this method may appear unnatural as well; thus, 

Gaussian smoothing was applied on the boundary. 

We can generate crosstalk-free images using these two 

algorithms. The generated crosstalk-free images can be utilized 

in many sonar-image-based algorithms, such as localization 

and navigation, because they can provide more accurate 

information for underwater landmarks or objects. 

C. 3D Reconstruction for Underwater Object 

As one application of the proposed method, we propose a 

precise 3D-data-based object detection using crosstalk removal 

method and the algorithm [16]. We apply the proposed method 

 
Fig. 14.  Training data generation process. 

  
(a)                                                         (b) 

Fig. 15.  Flowchart of crosstalk removal. (a) Crosstalk removal based on 

inpainting, (b) Crosstalk removal based on intensity adjustment. 
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to the 3D point cloud generation algorithm, such as in Fig. 16, 

for object detection. First, the proposed method divides the 

sonar image into an effective and ineffective region based on 

the tilt angle and altitude of the FSS. Subsequently, the 

proposed method extracts the extended highlights in the 

ineffective area using the difference filter. Next, the CNN 

detects the bounding box data of the crosstalk noise and seabed. 

If the extracted highlights by the difference filter are included 

in the region detected by the DNN, those pixels are filtered; 

subsequently, the true highlight of the underwater object can be 

identified. Next, the proposed method measures the length of 

the highlight extension from a distance between the extracted 

true highlights and remin. Subsequently, the 3D coordinate 

values of the object are calculated from the length of the 

highlight extension through (2)–(4). Finally, we reconstruct the 

object in three dimensions by calculating the coordinate values 

from sequential scanning images of the object and mapping the 

calculated value in the global coordinate system. We can 

recognize the underwater object by comparing the 

reconstructed 3D data with the ground truths. 

This method is different from conventional approaches to 

detect an object using the CNN. The conventional object 

detection approaches use a CNN that is trained to detect the 

specific target object. However, because of the difficulty in 

predicting the shape of an object in a sonar image and obtaining 

training images of the target object, we propose training the 

CNN to detect crosstalk noise. Because crosstalk noise exhibits 

similar characteristics regardless of the underwater object, 

obtaining the training data is relatively easy, and the CNN can 

detect crosstalk noise with high accuracy. Furthermore, 

crosstalk noise occurs near an object; therefore, we can detect 

the highlight of the object next to the crosstalk noise. Finally, 

we can recognize the object by generating 3D data using the 

highlight of the object. 

V. EXPERIMENT 

A. Experimental Setup 

We conducted indoor water tank experiments to obtain 

actual underwater FSS images to train the CNN and verify the 

proposed method. In the indoor water tank, the seabed indicates 

the floor of the water tank. 

The data used to train the CNN affects the detection accuracy  

 

 
significantly. Thus, we designed the experiments with four 

points to obtain various FSS images. First, we installed various 

types of objects on the floor of the water tank: aluminum 

cylinder, brick, and plastic basket. Next, we attached the FSS 

on the AUV “Cyclops” [6] and obtained the sonar images by 

moving the AUV in lawnmower trajectory. Hence, we can vary 

the angle and distance between the FSS and the underwater 

object. Moreover, the ambiguous highlight is the most difficult 

to distinguish when the highlights of the crosstalk noise, seabed, 

and underwater object are overlapped. Therefore, we attempted 

to obtain many images in which those highlights are overlapped. 

If the AUV moved in the lawn mower trajectory, this condition 

occurred frequently because the sonar sensor moves back and 

forth with respect to the installed underwater object. For the 

FSS, we used a dual-frequency identification sonar (DIDSON) 

developed by Edward et al. [44]. Tables I and II list the 

specifications of the DIDSON and AUV “Cyclops,” 

respectively. Next, we captured images by changing the tilt 

angle and altitude of the FSS. Consequently, we can cause 

crosstalk noise and the floor of the tank to appear in various 

sizes and at various locations. Finally, we conducted 

experiments in two indoor water tanks to increase the number 

of data and diversify the capturing environments. The 

dimensions of two indoor tanks is 8 m × 12 m × 6 m and 10 m × 

85 m × 3.5 m (width × length × depth), and both tanks were 

filled with clear water. Thus, we can construct a dataset 

containing diverse highlights of the crosstalk noise and floor 

 
Fig. 16.  Flowchart of the proposed method for detecting underwater objects. 

TABLE I. 

SPECIFICATIONS OF THE DIDSON 

Parameter Value 

Operating frequency 1.8 MHz 

Vertical beam spreading angle 14 ° 

Azimuth field of view 29 ° 

Number of beams 96 

Maximum resolution 0.3 ° 

Maximum imaging range 12 m 

Image size 512 × 96 

Frame rate 4–21 fps 

Depth rating 300 m 

 TABLE II. 

SPECIFICATIONS OF THE “CYCLOPS” 

Parameter Value 

Dimension 
0.9 m × 1.5 m × 0.9 m 

(width × length × height) 

Weight 210 kg in air 

Depth rating 100 m 

Propulsion 8 thrusters (475 W) 

Maximum speed 2 knots 

Power source & batteries 24 VDC & 600 Wh Li-Po battery × 2 

Computing system PC-104 (Intel Atom @ 1.66 GHz) × 2 

Sensors 

1.1 MHz & 1.8 MHz Forward Scan Sonar 

Digital pressure transducer 

Doppler velocity logger 

Fiber-optic gyro 
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with different intensities, different sizes, and different positions 

in the images. Fig. 17 illustrates the experimental setup to 

obtain the dataset and Fig. 18 shows examples of images 

obtained in different condition. 

We conducted 11 experiments scanning the underwater 

objects and took 16,792 frames of FSS images. Among these 

16,792 frames, we acquired 4,254 frames that the crosstalk 

noise occurred near the underwater object. To filter out 

sequentially taken similar images, we randomly sampled 1,173 

images and used them as training data. We then selected 384 

images not included in the training data and used them as test 

data. Table III specifies the constructed training dataset and 

experimental settings for capturing those training images. 

 

 

B. Experimental Result 

We trained the CNN for 22,700 epochs using 1,173 training 

images. To reduce the training time, we used the transfer 

learning and the CNN was trained from a pre-trained model on 

ImageNet [45]. Consequently, the training lasted 11 hours 

using the graphics processing unit (GPU) Titan X. Fig. 19 

shows the CNN loss with the training epochs. The CNN loss 

was calculated as the summation of the sum-squared error 

between the predicted bounding box and ground-truth 

bounding boxes and the sum-squared error between the 

predicted class probability and ground-truth class. We 

measured the loss value for every 100 training epochs using a 

batch of training dataset. We stopped the training if the loss 

value did not decrease significantly for 1,000 training epochs. 

The final loss value was 0.189. Fig. 20 shows the outputs of the 

CNN according to the training epochs. The CNN misclassifies 

the ambiguous highlights in the early stage. As the training 

progressed, the CNN could classify the ambiguous highlights 

 
(a) AUV “Cyclops” and DIDSON used in the experiment. 

 
(b) “Cyclops” and the objects installed on the floor 

Fig. 17.  Experiment in the indoor water tank. 

 
(a)                   (b)                   (c)                    (d)                   (e) 

Fig. 18.  Crosstalk noise in various environments. (a) Crosstalk noise around 
the brick at a distance, (b) Crosstalk noise around the brick nearby, (c) 

Crosstalk noise around the horizontally placed basket, (d) Crosstalk noise 

around the vertically placed basket, (e) Crosstalk noise around the cylinder. 

TABLE III. 

DESCRIPTION OF THE TRAINING DATASET 

Environment 

(w × l × d) 

Installed 

Objects 

Sonar Setting 

(tilt / altitude / 

rmin ~ rmax) 

# of 

Images 

Water Tank 1 

(8 m × 12 m × 6 m) 

Brick, Cylinder,  

Basket 

45.2 ° / 2.72 m 

0.42–10.42 m 
300 

Brick, Cylinder,  

Basket 

45.2 ° / 2.69 m 

0.42– 5.42 m 
150 

Brick, Cylinder,  

Basket 

45.2 ° / 1.68 m 

0.42–5.42 m 
360 

Brick, Basket 
30.0 ° / 2.15 m 

1.25–6.25 m 
300 

Water Tank 2 

(10 m × 85 m × 3.5 m) 
Basket 

45.0 ° / 3.18 m / 

1.67–6.67 m 
63 
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into crosstalk noise, the floor of the water tank, and objects 

accurately, and extracted the bounding box precisely. 

After completing the CNN training, we can detect the 

crosstalk noise and seabed using the trained CNN. In the 

images captured at the indoor water tank, the seabed indicates 

the floor of the water tank. Fig. 21 shows the detection result. 

The images used for the input were not included in the training 

dataset. As shown in Fig. 21a, the CNN can detect the floor of 

the water tank on the boundary between the effective and 

ineffective region. Fig. 21b shows the CNN detecting the 

crosstalk and floor simultaneously. As shown in Fig. 21c, the 

CNN can detect the crosstalk noise although the crosstalk 

overlapped with the highlight of the floor. Although both the 

crosstalk noise and floor have similar faint highlight, the CNN 

can classify them accurately. 

We measured the detection accuracy and processing speed to 

verify the performance of the proposed CNN-based crosstalk 

detection method quantitatively. The receiver operating 

characteristic (ROC) curve in Fig. 22 and the measured 

detection accuracy in Table IV show that the trained CNN can 

distinguish the crosstalk noise and the seabed accurately from 

other types of highlights, such as underwater objects, in given 

FSS images. The error primarily occurred at the instant when 

the crosstalk noise appeared in the ineffective region, as shown 

in Fig. 21c. In this situation, the crosstalk noise overlapped with 

the floor of the water tank; therefore, distinguishing the 

crosstalk noise and floor is difficult. 

 

 

 
Furthermore, the CNN can process 49.28 images per second 

when using the GPU Titan X. This processing speed was faster 

than the frame rates of the DIDSON. Therefore, if the proposed 

method is applied to the AUV, we can detect the crosstalk noise 

in real time. 

Subsequently, we removed the crosstalk noise in the FSS 

image using the bounding box data of the crosstalk noise that 

the CNN detected. Because the crosstalk noise occurs near the 

underwater objects, it becomes difficult to recognize the exact 

highlight of the underwater objects or landmarks utilized in the 

sonar image-based algorithms. The crosstalk-free image 

generated by the proposed method can enhance the reliability of 

algorithms utilizing sonar images. We removed the crosstalk 

noise in the given sonar images by applying two 

image-processing algorithms, inpainting and intensity 

adjustment, on the region detected as crosstalk by the CNN. 

Fig. 23 shows the result of the crosstalk noise removal. Figs. 

23a and 23d are the input images for the crosstalk removal 

algorithms. Crosstalk noise occurred on both sides of the high- 

 
Fig. 19.  Graph of loss value over training steps. 

 
Fig. 20.  Outputs of the CNN according to the training epochs. 

 
(a)                                      (b)                                     (c) 

Fig. 21.  Crosstalk and seabed detection result. (a) Detection of seabed, (b) 

Simultaneous detection of crosstalk and seabed, (c) Detection of crosstalk 

when it overlapped with seabed. 

 
Fig. 22.  ROC curve of the CNN. 

TABLE IV. 

DETECTION RESULT OF THE CNN 

Detection Accuracy  Processing 

speed Sensitivity  Specificity  

97.0 %  97.1 %  49.28 fps 
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light of the underwater object. Figs. 23b and 23e are the results 

of removing the crosstalk noise using inpainting. Figs. 23c and 

23f are the results of removing crosstalk noise using intensity 

adjustment. Both methods remove crosstalk noise well in the 

given image. Fig. 24 is a magnification of Fig. 23 around the 

object. It illustrates that the proposed method removes crosstalk 

noise well and the resulting images appear natural. 

The proposed method can process sonar images captured at 

various environments. Fig. 25 shows more results for the 

crosstalk noise detection and removal. Fig. 25a is a brick 

captured at a short distance, which is different from the sonar 

settings of Fig. 23a. Furthermore, the CNN detects the crosstalk 

noise and the floor of the water tank, as shown in Fig. 25b, and 

the detected crosstalk noise is removed accurately as shown in 

Fig. 25c. Furthermore, the proposed method detects and 

removes crosstalk noises occurred near another types of object, 

aluminum cylinder, such as in Figs. 25d–f. 

We applied the proposed crosstalk detection and the removal 

algorithm to the 3D point cloud generation algorithm. First, we 

extract the true highlight of the underwater object following Fig. 

26. Given the input image and the position of the AUV, we first 

calculate the remin and crop the ineffective area. Subsequently, 

the difference filter extracts the highlight extension in the 

ineffective region. However, these highlights includes the 

crosstalk noise and seabed. Therefore, the CNN detects the cro- 

 

 
sstalk noise and the seabed simultaneously. Finally, we identify 

the true highlight of the underwater object by excluding pixels 

included in the detected bounding boxes. 

Consequently, we can generate more accurate 3D point cloud 

of the underwater objects using the proposed method, as shown 

in Fig. 27. The AUV scans the object and captures the 

sequential FSS images. Subsequently, we calculate the 3D 

coordinate values of the extracted highlight for every frame in 

the sequential images and map the calculated 3D values 

according to the AUV position. Sonar images scanning the 

basket shown in Fig. 27a were the inputs of the proposed 

method. Fig. 27b shows the ground-truth point cloud and it 

appears as a gray box in Figs. 27c and 27d. Fig. 27c shows the 

point cloud generated using the sonar images without the 

proposed method. Owing to the other highlights of the crosstalk 

noise and the seabed near the object, the generated point cloud 

was different with the ground truth. Meanwhile, the proposed 

method can eliminate the peripheral highlights such as the 

crosstalk noise and seabed. As shown in Fig. 27d, we can 

generate a more accurate 3D point cloud of the underwater 

object. Furthermore, we generated the 3D point cloud of the 

aluminum cylinder of Fig. 27e. Fig. 27f is the ground-truth 

point cloud of the cylinder, and it is illustrated as gray cylinder 

           
(a)                (b)                (c)                (d)                (e)                (f) 

Fig. 23.  Crosstalk removal result. (a) and (d) Input image, (b) and (e) 

Crosstalk removal result using inpainting, (c) and (f) Crosstalk removal result 

using intensity adjustment. 

    
(a)                           (b)                           (c)                           (d) 

Fig. 24.  Magnification of crosstalk removal result. (a) Magnification of Fig. 

23b, (b) Magnification of Fig. 23c, (c) Magnification of Fig. 23e, (d) 

Magnification of Fig. 23f. 

 
(a)                 (b)                (c)                (d)                 (e)                (f) 

Fig. 25.  Crosstalk noise detection and removal result. (a) and (d) Brick and 
cylinder in different conditions, (b) and (e) Crosstalk and seabed detection 

results, (c) and (f) Crosstalk removal results. 

 
Fig. 26.  Processing pipeline of the proposed method. 
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in Fig. 27g and 27h. We can generate the accurate cylindrical 

point cloud as shown in Fig. 27h by removing the crosstalk 

noise with the proposed method. 

To evaluate two generated point clouds quantitatively, we 

measured the typical 3D data: width (w), length (l), and height 

(h) of the basket, and diameter (D) and height (h) of the 

cylinder. Tables V and VI show the results. The proposed 

method allowed to reconstruct the 3D data of the underwater 

object more accurately. Particularly, by filtering the crosstalk 

noise near the object, the proposed method can decrease the 

error significantly with respect to the horizontal data of the 

object such as the width and diameter. Because we can measure 

the accurate 3D data with the proposed method, we can 

recognize the underwater target object by comparing with the 

ground truth. 

C. Field experiment 

Furthermore, we applied the proposed method to the sonar 

images captured at the sea to verify the robustness of the 

proposed method. Similar to the indoor water tank experiment, 

we attached DIDSON to the AUV and captured sonar images 

with the AUV moving in a lawn mower trajectory. We scanned 

a site containing a rocky seabed and acquired sonar images. 

The proposed method can process sonar images captured at 

sea, as shown in Fig. 28. As shown in Figs. 28a and 28f, the 

sonar images captured at sea are more complex, exhibiting 

highlights and shadows that are more diverse because the 

seabed has many natural terrains such as coral reefs, seaweeds, 

and rock. Among the diverse highlights, the CNN detects the 

crosstalk noise occurring near a rock and seabed, as shown in 

Figs. 28b and 28g. Subsequently, we can generate 

crosstalk-free images for sonar images captured at sea, as 

shown in Figs. 28c and 28h. Furthermore, we can extract the 

true highlight of the rock by eliminating the highlights of the 

crosstalk noise and seabed using the bounding box data 

detected by the CNN as shown in Figs. 28e and 28j. Compared 

to Figs. 28d and 28i, the extended highlights can be extracted 

more accurately using the proposed method. We can generate 

the point cloud of the rock using the extracted true highlights in 

Figs. 28e and 28j. 

Although the training of the CNN used only images captured 

in the indoor water tank, the proposed method can detect the 

crosstalk noise and seabed in sonar images of the sea. The 

gradation pattern of crosstalk noise was similar to those of 

sonar images at sea although other characteristics such as 

intensity and shape were different. Therefore, the CNN can use 

the feature map trained by the sonar images at the indoor water 

tank to detect the crosstalk noise and seabed in the images of 

real sea. In summary, the proposed method can handle FSS 

images captured at the various environments. Furthermore, the 

proposed method can be transferred to other sonars if the sonar 

uses the similar imaging mechanism; thus, crosstalk occurs 

based on similar causes and has similar characteristics. 

 
(a)                                                         (b)                                                             (c)                                                          (d) 

 
(e)                                                        (f)                                                                (g)                                                        (h)    

Fig. 27.  Comparison of generated 3D point cloud. (a) and (e) Object used in the experiment, (b) and (f) Ground truth point cloud, (c) and (g) Point cloud generated 

without the proposed method, (d) and (h) More accurate point cloud by applying the proposed method. 

TABLE V. 

3D DATA CALCULATION RESULT OF THE BASKET 

 Ground truth  Without the proposed method  The proposed method 

 w  l  h  w  l  h  w  l  h 

Value [m] 0.62  0.38  0.41  0.98  0.41  0.42  0.60  0.41  0.43 

Error rate [%] -  -  -  58.1  7.9  2.4  3.2  7.9  4.9 

 

 
TABLE VI. 

3D DATA CALCULATION RESULT OF THE CYLINDER 

 
Ground truth  

Without the 

proposed method 
 

The proposed 

method 
 D  h  D  h  D  h 

Value [m] 0.27  0.41  0.53  0.39  0.53  0.39 

Error rate [%] -  -  96.3  4.9  7.4  4.9 
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VI. CONCLUSION 

In this paper, we proposed a method to detect and remove the 

crosstalk noise using the CNN in the given sonar images. 

Because the crosstalk noise occurred in similar form regardless 

of the underwater object and environments, obtaining training 

images is relatively easy, and the trained CNN detects the 

crosstalk noise accurately in the given sonar images captured in 

various environments. Then, the proposed method removes the 

crosstalk noise preserving other important information from a 

single given image by applying the image processing 

algorithms on the detected region. 

We applied the proposed method to the 3D point cloud 

generation-based object detection method to verify the 

performance of the proposed method. With the proposed 

method, we extracted the true highlight of the object and 

generated a more accurate 3D point cloud. Then, it is possible 

to recognize the underwater object by comparing the calculated 

3D data and the ground truth of the target object. 

Because the crosstalk noise occurs near the underwater 

object and distorts the highlight of the object, the crosstalk 

noise makes recognizing the underwater objects and landmarks 

difficult. The crosstalk-free sonar images generated by the 

proposed method can be applied to other sonar-image-based 

applications and enhance the reliability of those applications. 
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