Open Access System for Information Sharing

Login Library

 

Article
Cited 40 time in webofscience Cited 40 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorBAEK, CHANG KI-
dc.contributor.authorSeungho Lee-
dc.contributor.authorKIM, KIHYUN-
dc.contributor.authorDeok-Hong Kang-
dc.contributor.authorMEYYAPPAN, MEYYA-
dc.date.accessioned2019-12-04T08:11:07Z-
dc.date.available2019-12-04T08:11:07Z-
dc.date.created2019-12-02-
dc.date.issued2019-02-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/100284-
dc.description.abstractThermoelectric modules based on silicon nanowires (Si-NI/Vs) have recently attracted significant attention as they show an improved thermoelectric efficiency due to a decrease in thermal conductivity. Here, we adopt a top-down fabrication method to dramatically reduce the thermal conductivity of vertical Si-NWs. The thermal conductivity of a vertical Si-NW is significantly suppressed with an increasing surface roughness, decreasing diameter, and increasing doping concentration. This large suppression is caused by enhanced phonon scattering, which depends on the phonon wavelength. The boron- and phosphorus-doped rough Si-NWs with a diameter of 200 nm and surface roughness of 6.88 nm show the lowest thermal conductivity of 10.1 and 14.8 W.m(-1).K-1, respectively, which are 5.1- and 3.6-fold lower than that of a smooth intrinsic nanowire and 14.8- and 10.1-fold lower than that of bulk silicon. A thermoelectric module was fabricated using this doped rough Si-NW array, and its thermoelectric performance is compared with previously reported Si-NW modules. The fabricated module exhibits an excellent performance with an open circuit voltage of 216.8 mV.cm(-2) and a maximum power of 3.74 mu W.cm(-2) under a temperature difference of 180 K, the highest reported for Si-NW thermoelectric modules.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.relation.isPartOfNano Letters-
dc.titleVertical Silicon Nanowire Thermoelectric Modules with Enhanced Thermoelectric Properties-
dc.typeArticle-
dc.identifier.doi10.1021/acs.nanolett.8b03822-
dc.type.rimsART-
dc.identifier.bibliographicCitationNano Letters, v.19, no.2, pp.747 - 755-
dc.identifier.wosid000459222300016-
dc.citation.endPage755-
dc.citation.number2-
dc.citation.startPage747-
dc.citation.titleNano Letters-
dc.citation.volume19-
dc.contributor.affiliatedAuthorBAEK, CHANG KI-
dc.contributor.affiliatedAuthorSeungho Lee-
dc.contributor.affiliatedAuthorKIM, KIHYUN-
dc.contributor.affiliatedAuthorMEYYAPPAN, MEYYA-
dc.identifier.scopusid2-s2.0-85060709905-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusTHERMAL-CONDUCTIVITY-
dc.subject.keywordPlusPHONON TRANSPORT-
dc.subject.keywordPlusPOROUS SILICON-
dc.subject.keywordPlusPOWER-
dc.subject.keywordPlusHEAT-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordAuthorVertical silicon nanowire-
dc.subject.keywordAuthortop-down technique-
dc.subject.keywordAuthorphonon scattering-
dc.subject.keywordAuthorthermal conductivity-
dc.subject.keywordAuthorsurface roughness-
dc.subject.keywordAuthorthermoelectric module-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

백창기BAEK, CHANG KI
Dept. Convergence IT Engineering
Read more

Views & Downloads

Browse