Open Access System for Information Sharing

Login Library

 

Article
Cited 26 time in webofscience Cited 26 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorHwang, Hyejin-
dc.contributor.authorKim, Yohann-
dc.contributor.authorPark, Jae-Hoon-
dc.contributor.authorJeong, Unyong-
dc.date.accessioned2020-04-08T08:50:04Z-
dc.date.available2020-04-08T08:50:04Z-
dc.date.created2020-03-04-
dc.date.issued2020-02-
dc.identifier.issn1616-301X-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/102834-
dc.description.abstractAlthough a variety of stretchable strain sensors based on electrical percolation have been reported, stretchable sensors detecting low strains have been rarely demonstrated. This is because large stretchability of a strain sensor conflicts with high strain resolution at low strains. Here, the electrical percolation into 2D is confined and a strain sensor that is highly sensitive at low strains and simultaneously highly stretchable is presented. The 2D confinement of the electrical percolation is accomplished by a close-packed monolayer assembly of conductive microparticles (MPs) on an elastomer substrate. The current profiles of the MP monolayer at low strains are in situ visualized using conductive atomic force microscopy. When the lattice of the MP monolayer is aligned vertically to the strain direction, the resistance is highly sensitive to low-strain deformations (epsilon = 0 - 0.05), but the sensor has reasonable stretchability (epsilon = 0.3). The simultaneous achievement of the high sensitivity at low strains and the reasonable stretchability is explained by the relationship between the strain-dependent current profile and the relative position changes of the MPs. A high-precision pulse sensor clearly showing the representative peaks is demonstrated.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.relation.isPartOfADVANCED FUNCTIONAL MATERIALS-
dc.subjectMonolayers-
dc.subjectPercolation (solid state)-
dc.subjectSolvents-
dc.subjectClose-packed monolayers-
dc.subjectConductive atomic force microscopy-
dc.subjectElectrical percolation-
dc.subjectHigh strain resolution-
dc.subjectMicroparticle assemblies-
dc.subjectSimultaneous achievement-
dc.subjectStrain sensors-
dc.subjectStretchable electronics-
dc.subjectStrain-
dc.title2D Percolation Design with Conductive Microparticles for Low-Strain Detection in a Stretchable Sensor-
dc.typeArticle-
dc.identifier.doi10.1002/adfm.201908514-
dc.type.rimsART-
dc.identifier.bibliographicCitationADVANCED FUNCTIONAL MATERIALS, v.30, no.13-
dc.identifier.wosid000512967600001-
dc.citation.number13-
dc.citation.titleADVANCED FUNCTIONAL MATERIALS-
dc.citation.volume30-
dc.contributor.affiliatedAuthorHwang, Hyejin-
dc.contributor.affiliatedAuthorPark, Jae-Hoon-
dc.contributor.affiliatedAuthorJeong, Unyong-
dc.identifier.scopusid2-s2.0-85079402033-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusELECTRICAL PERCOLATION-
dc.subject.keywordPlusPOLYMER NANOCOMPOSITES-
dc.subject.keywordPlusSILVER NANOPARTICLES-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusSENSITIVITY-
dc.subject.keywordPlusMONOLAYER-
dc.subject.keywordPlusPARTICLES-
dc.subject.keywordPlusNETWORKS-
dc.subject.keywordPlusSIZE-
dc.subject.keywordAuthor2D percolation-
dc.subject.keywordAuthormicroparticle assembly-
dc.subject.keywordAuthorstrain sensor-
dc.subject.keywordAuthorstretchable electronics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassssci-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

정운룡JEONG, UNYONG
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse