Open Access System for Information Sharing

Login Library

 

Article
Cited 77 time in webofscience Cited 83 time in scopus
Metadata Downloads

Signal and noise extraction from analog memory elements for neuromorphic computing SCIE SCOPUS

Title
Signal and noise extraction from analog memory elements for neuromorphic computing
Authors
Seyoung Kim
Date Issued
2018-05-29
Publisher
NATURE PUBLISHING GROUP
Abstract
Dense crossbar arrays of non-volatile memory (NVM) can potentially enable massively parallel and highly energy-efficient neuromorphic computing systems. The key requirements for the NVM elements are continuous (analog-like) conductance tuning capability and switching symmetry with acceptable noise levels. However, most NVM devices show nonlinear and asymmetric switching behaviors. Such non-linear behaviors render separation of signal and noise extremely difficult with conventional characterization techniques. In this study, we establish a practical methodology based on Gaussian process regression to address this issue. The methodology is agnostic to switching mechanisms and applicable to various NVM devices. We show tradeoff between switching symmetry and signal-to-noise ratio for HfO2-based resistive random access memory. Then, we characterize 1000 phase-change memory devices based on Ge2Sb2Te5 and separate total variability into device-to-device variability and inherent randomness from individual devices. These results highlight the usefulness of our methodology to realize ideal NVM devices for neuromorphic computing.
URI
https://oasis.postech.ac.kr/handle/2014.oak/103342
DOI
10.1038/s41467-018-04485-1
ISSN
2041-1723
Article Type
Article
Citation
Nature Communications, vol. 9, no. 2102, 2018-05-29
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse