Open Access System for Information Sharing

Login Library

 

Article
Cited 19 time in webofscience Cited 25 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorSHIN, DA SEUL-
dc.contributor.authorChi Hun Lee-
dc.contributor.authorUta Kühn-
dc.contributor.authorLEE, SEUNG CHUL-
dc.contributor.authorSeong Jin Park-
dc.contributor.authorHolger Schwab-
dc.contributor.authorSergio Scudino-
dc.contributor.authorKonrad Kosiba-
dc.date.accessioned2020-12-29T04:50:28Z-
dc.date.available2020-12-29T04:50:28Z-
dc.date.created2020-11-30-
dc.date.issued2021-05-
dc.identifier.issn0925-8388-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/104687-
dc.description.abstractThe prerequisite for exploiting the full potential of additive manufacturing (AM) is the rapid and cost-effective fabrication of defect-free components. However, each newly processed material usually requires the identification of the optimal parameter set, a cost and time-consuming process, mostly conducted by trial and error. Here, an optimization strategy based on artificial intelligence (AI) is developed for predicting the density of additively manufactured Ti-5Al-5V-5Mo-3Cr components from experimental data. The present approach opens the way to a faster identification of the optimum set of processing parameters via AI. (C) 2020 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.relation.isPartOfJOURNAL OF ALLOYS AND COMPOUNDS-
dc.titleOptimizing laser powder bed fusion of Ti-5Al-5V-5Mo-3Cr by artificial intelligence-
dc.typeArticle-
dc.identifier.doi10.1016/j.jallcom.2020.158018-
dc.type.rimsART-
dc.identifier.bibliographicCitationJOURNAL OF ALLOYS AND COMPOUNDS, v.862-
dc.identifier.wosid000624934000018-
dc.citation.titleJOURNAL OF ALLOYS AND COMPOUNDS-
dc.citation.volume862-
dc.contributor.affiliatedAuthorSHIN, DA SEUL-
dc.contributor.affiliatedAuthorChi Hun Lee-
dc.contributor.affiliatedAuthorLEE, SEUNG CHUL-
dc.contributor.affiliatedAuthorSeong Jin Park-
dc.identifier.scopusid2-s2.0-85097415652-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordAuthorAdditive manufacturing-
dc.subject.keywordAuthorLaser powder bed fusion-
dc.subject.keywordAuthorTi-based alloy-
dc.subject.keywordAuthorArtificial intelligence-
dc.subject.keywordAuthorArtificial neural networks-
dc.subject.keywordAuthorDeep learning-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

박성진PARK, SEONG JIN
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse