DC Field | Value | Language |
---|---|---|
dc.contributor.author | SHIN, DA SEUL | - |
dc.contributor.author | Chi Hun Lee | - |
dc.contributor.author | Uta Kühn | - |
dc.contributor.author | LEE, SEUNG CHUL | - |
dc.contributor.author | Seong Jin Park | - |
dc.contributor.author | Holger Schwab | - |
dc.contributor.author | Sergio Scudino | - |
dc.contributor.author | Konrad Kosiba | - |
dc.date.accessioned | 2020-12-29T04:50:28Z | - |
dc.date.available | 2020-12-29T04:50:28Z | - |
dc.date.created | 2020-11-30 | - |
dc.date.issued | 2021-05 | - |
dc.identifier.issn | 0925-8388 | - |
dc.identifier.uri | https://oasis.postech.ac.kr/handle/2014.oak/104687 | - |
dc.description.abstract | The prerequisite for exploiting the full potential of additive manufacturing (AM) is the rapid and cost-effective fabrication of defect-free components. However, each newly processed material usually requires the identification of the optimal parameter set, a cost and time-consuming process, mostly conducted by trial and error. Here, an optimization strategy based on artificial intelligence (AI) is developed for predicting the density of additively manufactured Ti-5Al-5V-5Mo-3Cr components from experimental data. The present approach opens the way to a faster identification of the optimum set of processing parameters via AI. (C) 2020 Elsevier B.V. All rights reserved. | - |
dc.language | English | - |
dc.publisher | ELSEVIER SCIENCE SA | - |
dc.relation.isPartOf | JOURNAL OF ALLOYS AND COMPOUNDS | - |
dc.title | Optimizing laser powder bed fusion of Ti-5Al-5V-5Mo-3Cr by artificial intelligence | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.jallcom.2020.158018 | - |
dc.type.rims | ART | - |
dc.identifier.bibliographicCitation | JOURNAL OF ALLOYS AND COMPOUNDS, v.862 | - |
dc.identifier.wosid | 000624934000018 | - |
dc.citation.title | JOURNAL OF ALLOYS AND COMPOUNDS | - |
dc.citation.volume | 862 | - |
dc.contributor.affiliatedAuthor | SHIN, DA SEUL | - |
dc.contributor.affiliatedAuthor | Chi Hun Lee | - |
dc.contributor.affiliatedAuthor | LEE, SEUNG CHUL | - |
dc.contributor.affiliatedAuthor | Seong Jin Park | - |
dc.identifier.scopusid | 2-s2.0-85097415652 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.type.docType | Article | - |
dc.subject.keywordAuthor | Additive manufacturing | - |
dc.subject.keywordAuthor | Laser powder bed fusion | - |
dc.subject.keywordAuthor | Ti-based alloy | - |
dc.subject.keywordAuthor | Artificial intelligence | - |
dc.subject.keywordAuthor | Artificial neural networks | - |
dc.subject.keywordAuthor | Deep learning | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Metallurgy & Metallurgical Engineering | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Metallurgy & Metallurgical Engineering | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
library@postech.ac.kr Tel: 054-279-2548
Copyrights © by 2017 Pohang University of Science ad Technology All right reserved.