Open Access System for Information Sharing

Login Library

 

Article
Cited 13 time in webofscience Cited 12 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorDharmaiah, Peyala-
dc.contributor.authorLee, Kap-Ho-
dc.contributor.authorSong, Sung Ho-
dc.contributor.authorKim, Hyoung Seop-
dc.contributor.authorHong, Soon-Jik-
dc.date.accessioned2021-01-14T01:50:20Z-
dc.date.available2021-01-14T01:50:20Z-
dc.date.created2020-12-10-
dc.date.issued2021-01-
dc.identifier.issn0025-5408-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/104804-
dc.description.abstractThe inclusion of secondary phase in a matrix has been proven effective in diverse regimes of thermoelectric (TE) material research intended to attain high thermoelectric performance. Herein, we show that the introduction of semiconducting Zn4Sb3 alloys into a Bi0.5Sb1.5Te3 matrix to form ZnTe nanophase in situ causes enhanced electrical conductivity and reduced thermal conductivity. This is due to increase in the carrier concentration and intensified phonon scattering at interface potentials. These simultaneously increased the power factor by 17 % and achieved a remarkable reduction (25 %) of lattice thermal conductivity at 350 K for BST/2 wt% Zn(4)Sb(3 )composites. As a result, the largest value of ZT (1.35) was obtained at 350 K, which is 26 % higher than that of the Bi0.5Sb1.5Te3 matrix at the same temperature. Moreover, the maximum conversion efficiency was about 8.74 % at Delta T = 200 K for BST/2 wt% Zn4Sb3 composites, which is 25 % higher than that of a bare BST sample.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.relation.isPartOfMATERIALS RESEARCH BULLETIN-
dc.subjectBismuth alloys-
dc.subjectCarrier concentration-
dc.subjectII-VI semiconductors-
dc.subjectSemiconducting bismuth compounds-
dc.subjectSemiconducting tellurium compounds-
dc.subjectSemiconducting zinc compounds-
dc.subjectThermal conductivity of solids-
dc.subjectThermoelectricity-
dc.subjectWide band gap semiconductors-
dc.subjectZinc alloys-
dc.subjectElectrical conductivity-
dc.subjectHeterogeneous interfaces-
dc.subjectInterface potentials-
dc.subjectLattice thermal conductivity-
dc.subjectPotential barriers-
dc.subjectSecondary phase-
dc.subjectThermoelectric material-
dc.subjectThermoelectric performance-
dc.subjectSemiconducting antimony compounds-
dc.titleEnhanced thermoelectric performance of Bi0.5Sb1.5Te3 composites through potential barrier scattering at heterogeneous interfaces-
dc.typeArticle-
dc.identifier.doi10.1016/j.materresbull.2020.111023-
dc.type.rimsART-
dc.identifier.bibliographicCitationMATERIALS RESEARCH BULLETIN, v.133-
dc.identifier.wosid000581707700011-
dc.citation.titleMATERIALS RESEARCH BULLETIN-
dc.citation.volume133-
dc.contributor.affiliatedAuthorKim, Hyoung Seop-
dc.identifier.scopusid2-s2.0-85090426124-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusBISBTE-BASED COMPOSITES-
dc.subject.keywordPlusCARRIER SCATTERING-
dc.subject.keywordPlusBI2TE3-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusPROPERTY-
dc.subject.keywordPlusZN4SB3-
dc.subject.keywordPlusFIGURE-
dc.subject.keywordPlusMERIT-
dc.subject.keywordPlusZINC-
dc.subject.keywordAuthorBismuth antimony telluride-
dc.subject.keywordAuthorGas-atomization-
dc.subject.keywordAuthorComposites-
dc.subject.keywordAuthorInterface potentials-
dc.subject.keywordAuthorPhonon scattering-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김형섭KIM, HYOUNG SEOP
Ferrous & Eco Materials Technology
Read more

Views & Downloads

Browse