Open Access System for Information Sharing

Login Library

 

Article
Cited 3 time in webofscience Cited 3 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorHONG, HYEONJUN-
dc.contributor.authorKim, Dong Sung-
dc.date.accessioned2021-02-09T01:50:16Z-
dc.date.available2021-02-09T01:50:16Z-
dc.date.created2021-01-20-
dc.date.issued2020-12-
dc.identifier.issn2079-4991-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/105024-
dc.description.abstractThe topographical micro-patterning of nanofibrillar collagen gels is promising for the fabrication of biofunctional constructs mimicking topographical cell microenvironments of in vivo extracellular matrices. Nevertheless, obtaining structurally robust collagen micro-patterns through this technique is still a challenging issue. Here, we report a novel in situ photochemical crosslinking-assisted collagen embossing (IPC-CE) process as an integrative fabrication technique based on collagen compression-based embossing and UV-riboflavin crosslinking. The IPC-CE process using a micro-patterned polydimethylsiloxane (PDMS) master mold enables the compaction of collagen nanofibrils into micro-cavities of the mold and the simultaneous occurrence of riboflavin-mediated photochemical reactions among the nanofibrils, resulting in a robust micro-patterned collagen construct. The micro-patterned collagen construct fabricated through the IPC-CE showed a remarkable mechanical resistivity against rehydration and manual handling, which could not be achieved through the conventional collagen compression-based embossing alone. Micro-patterns of various sizes (minimum feature size <10 mu m) and shapes could be obtained by controlling the compressive pressure (115 kPa) and the UV dose (3.00 J/cm(2)) applied during the process. NIH 3T3 cell culture on the micro-patterned collagen construct finally demonstrated its practical applicability in biological applications, showing a notable effect of anisotropic topography on cells in comparison with the conventional construct.-
dc.languageEnglish-
dc.publisherMDPI-
dc.relation.isPartOfNanomaterials-
dc.titleRobust Topographical Micro-Patterning of Nanofibrillar Collagen Gel by In Situ Photochemical Crosslinking-Assisted Collagen Embossing-
dc.typeArticle-
dc.identifier.doi10.3390/nano10122574-
dc.type.rimsART-
dc.identifier.bibliographicCitationNanomaterials, v.10, no.12-
dc.identifier.wosid000602630800001-
dc.citation.number12-
dc.citation.titleNanomaterials-
dc.citation.volume10-
dc.contributor.affiliatedAuthorHONG, HYEONJUN-
dc.contributor.affiliatedAuthorKim, Dong Sung-
dc.identifier.scopusid2-s2.0-85098534827-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.type.docTypeArticle-
dc.subject.keywordPlusBIOMIMETIC MATERIALS-
dc.subject.keywordPlusCELL-
dc.subject.keywordPlusLAYER-
dc.subject.keywordPlusMORPHOLOGY-
dc.subject.keywordPlusGROOVES-
dc.subject.keywordAuthorcell microenvironments-
dc.subject.keywordAuthornanofibrillar collagen gel-
dc.subject.keywordAuthormicro-patterning-
dc.subject.keywordAuthorcollagen compression-
dc.subject.keywordAuthorcollagen embossing-
dc.subject.keywordAuthorphotochemical crosslinking-
dc.subject.keywordAuthorcell culture scaffold-
dc.subject.keywordAuthoranisotropic topography-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김동성KIM, DONG SUNG
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse