Open Access System for Information Sharing

Login Library

 

Article
Cited 28 time in webofscience Cited 28 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorNIKAM, REVANNATH-
dc.contributor.authorRajput, Krishn Gopal-
dc.contributor.authorHwang, Hyunsang-
dc.date.accessioned2021-06-01T02:07:10Z-
dc.date.available2021-06-01T02:07:10Z-
dc.date.created2021-03-08-
dc.date.issued2021-02-
dc.identifier.issn1613-6810-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/105179-
dc.description.abstractThe first report of a quantized conductance atomic threshold switch (QCATS) using an atomically-thin hexagonal boron nitride (hBN) layer is provided. This QCATS has applications in memory and logic devices. The QCATS device shows a stable and reproducible conductance quantization state at 1 center dot G(0) by forming single-atom point contact through a monoatomic boron defect in an hBN layer. An atomistic switching mechanism in hBN-QCATS is confirmed by in situ visualization of mono-atomic conductive filaments. Atomic defects in hBN are the key factor that affects the switching characteristic. The hBN-QCATS has excellent switching characteristics such as low operation voltage of 0.3 V, low "off" current of 1 pA, fast switching of 50 ns, and high endurance > 10(7) cycles. The variability of switching characteristics, which are the major problems of switching device, can be solved by reducing the area and thickness of the switching region to form single-atom point contact. The switching layer thickness is scaled down to the single-atom (approximate to 0.33 nm) h-BN layer, and the switching area is limited to single-atom defects. By implementing excellent switching characteristics using single-layer hBN, the possibility of implementing stable and uniform atomic-switching devices for future memory and logic applications is confirmed.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.relation.isPartOfSMALL-
dc.subjectQUANTIZED CONDUCTANCE-
dc.subjectGRAPHENE-
dc.titleSingle-Atom Quantum-Point Contact Switch Using Atomically Thin Hexagonal Boron Nitride-
dc.typeArticle-
dc.identifier.doi10.1002/smll.202006760-
dc.type.rimsART-
dc.identifier.bibliographicCitationSMALL, v.17, no.7-
dc.identifier.wosid000612039200001-
dc.citation.number7-
dc.citation.titleSMALL-
dc.citation.volume17-
dc.contributor.affiliatedAuthorNIKAM, REVANNATH-
dc.contributor.affiliatedAuthorRajput, Krishn Gopal-
dc.contributor.affiliatedAuthorHwang, Hyunsang-
dc.identifier.scopusid2-s2.0-85099914110-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordAuthoratomic contacts-
dc.subject.keywordAuthoratomic switch-
dc.subject.keywordAuthordefects-
dc.subject.keywordAuthorhBN-
dc.subject.keywordAuthorquantized conductance-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

황현상HWANG, HYUNSANG
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse