Open Access System for Information Sharing

Login Library

 

Article
Cited 28 time in webofscience Cited 35 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorLim, Seyeong-
dc.contributor.authorKim, Jigeon-
dc.contributor.authorPark, Jin Young-
dc.contributor.authorMin, Jihyun-
dc.contributor.authorYun, Sunhee-
dc.contributor.authorPark, Taiho-
dc.contributor.authorKim, Younghoon-
dc.contributor.authorChoi, Jongmin-
dc.date.accessioned2021-06-01T02:09:07Z-
dc.date.available2021-06-01T02:09:07Z-
dc.date.created2021-02-24-
dc.date.issued2021-02-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/105190-
dc.description.abstractCsPbI3 perovskite quantum dots (CsPbI3-PQDs) have recently come into focus as a light-harvesting material that can act as a platform through which to combine the material advantages of both perovskites and QDs. However, the low cubic-phase stability of CsPbI3-PQDs in ambient conditions has been recognized as a factor that inhibits device stability. TiO2 nanoparticles are the most regularly used materials as an electron transport layer (ETL) in CsPbI3-PQD photovoltaics; however, we found that TiO2 can facilitate the cubic-phase degradation of CsPbI3-PQDs due to its vigorous photocatalytic activity. To address these issues, we have developed chloride-passivated SnO2 QDs (CI@SnO2 QDs), which have low photocatalytic activity and few surface traps, to suppress the cubic-phase degradation of CsPbI3-PQDs. Given these advantages, the CsPbI3-PQD solar cells based on CI@SnO2 ETLs show significantly improved device operational stability (under conditions of 50% relative humidity and 1-sun illumination), compared to those based on TiO2 ETLs. In addition, the CI@SnO2-based devices showed improved open circuit voltage and photocurrent density, resulting in enhanced power conversion efficiency (PCE) up to 14.5% compared to that of TiO2-based control devices (PCE of 13.8%).-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.relation.isPartOfACS APPLIED MATERIALS & INTERFACES-
dc.titleSuppressed Degradation and Enhanced Performance of CsPbI3 Perovskite Quantum Dot Solar Cells via Engineering of Electron Transport Layers-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.0c15484-
dc.type.rimsART-
dc.identifier.bibliographicCitationACS APPLIED MATERIALS & INTERFACES, v.13, no.5, pp.6119 - 6129-
dc.identifier.wosid000619638400020-
dc.citation.endPage6129-
dc.citation.number5-
dc.citation.startPage6119-
dc.citation.titleACS APPLIED MATERIALS & INTERFACES-
dc.citation.volume13-
dc.contributor.affiliatedAuthorLim, Seyeong-
dc.contributor.affiliatedAuthorMin, Jihyun-
dc.contributor.affiliatedAuthorYun, Sunhee-
dc.contributor.affiliatedAuthorPark, Taiho-
dc.identifier.scopusid2-s2.0-85100657158-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordAuthorCsPbI3 perovskite quantum dots-
dc.subject.keywordAuthorcolloidal quantum dots-
dc.subject.keywordAuthorphase stability-
dc.subject.keywordAuthorsolar cells-
dc.subject.keywordAuthorelectron transport layers-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

박태호PARK, TAIHO
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse