Open Access System for Information Sharing

Login Library

 

Article
Cited 21 time in webofscience Cited 22 time in scopus
Metadata Downloads

Self-Powered Gas Sensor Based on a Photovoltaic Cell and a Colorimetric Film with Hierarchical Micro/Nanostructures SCIE SCOPUS

Title
Self-Powered Gas Sensor Based on a Photovoltaic Cell and a Colorimetric Film with Hierarchical Micro/Nanostructures
Authors
Kang, K.Park, J.Kim, B.Na, K.Cho, I.Rho, J.Yang, D.Lee, J.-Y.Park, I.
Date Issued
2020-07
Publisher
NLM (Medline)
Abstract
We report a new type of self-powered gas sensors based on the combination of a colorimetric film with hierarchical micro/nanostructures and organic photovoltaic cells. The transmittance of the colorimetric film with micro/nanostructures coated with N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) changes by reacting with NO2 gas, and it is measured as a current output of the photovoltaic cell. For this purpose, materials for the organic photovoltaic cells were carefully chosen to match the working wavelength of the TMPD. Micropost arrays and nanowires increase the surface area for the gas reaction and thus improve the transmittance changes by NO2 gas (6.7% change for the plain film vs 27.7% change for the film with hierarchical micro/nanostructures to 20 ppm of NO2). Accordingly, the colorimetric device with the hierarchical structures showed a response of ��I/I0 = 0.27-20 ppm of NO2, which is a 71% improvement compared to that of the plain sensing film. Furthermore, it showed a high selectivity against other gases such as H2S and CO with almost negligible responses. Since the current output change of the photovoltaic cell is utilized as a sensor signal, no extra electrical power is required for the operation of gas sensors. We also integrated the sensor device with an electrical module and demonstrated a self-powered gas alarm system.
URI
https://oasis.postech.ac.kr/handle/2014.oak/105587
DOI
10.1021/acsami.0c08128
ISSN
1944-8244
Article Type
Article
Citation
ACS applied materials & interfaces, vol. 12, no. 35, page. 39024 - 39032, 2020-07
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

노준석RHO, JUNSUK
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse