Open Access System for Information Sharing

Login Library

 

Article
Cited 48 time in webofscience Cited 50 time in scopus
Metadata Downloads

Highly efficient organic light-emitting diodes with hole injection layer of transition metal oxides SCIE SCOPUS

Title
Highly efficient organic light-emitting diodes with hole injection layer of transition metal oxides
Authors
Kim, SYBaik, JMYu, HKLee, JL
Date Issued
2005-11-01
Publisher
AMER INST PHYSICS
Abstract
We report on the advantage of interlayers using transition-metal oxides, such as iridium oxide (IrOx) and ruthenium oxide (RuOx), between indium tin oxide (ITO) anodes and 4'-bis[N-(1-naphtyl)-N-phenyl-amino]biphenyl (alpha-NPD) hole transport layers on the electrical and optical properties of organic light-emitting diodes (OLEDs). The operation voltage at a current density of 100 mA/cm(2) decreased from 17 to 11 V for OLEDs with 3-nm-thick IrOx interlayers and from 17 to 14 V for OLEDs with 2-nm-thick RuOx ones. The maximum luminance value increased about 50% in OLED using IrOx and 108% in OLED using RuOx. Synchrotron radiation photoelectron spectroscopy results revealed that core levels of Ru 3d and Ir 4f shifted to high binding energies and that the valence band was splitting from metallic Fermi level as the surface of the transition metal was treated with O-2 plasma. This provides evidence that the transition-metal surface transformed to a transition-metal oxide. The surface of the transition metal became smoother with the O-2 plasma treatment. The thickness was calculated to be 0.4 nm for IrOx and 0.6 nm for RuOx using x-ray reflectivity measurements. Secondary electron emission spectra showed that the work function increased by 0.6 eV for IrOx and by 0.4 eV for RuOx. Thus, the transition-metal oxides lowered the potential barrier for hole injection from ITO to alpha-NPD, reducing the turn-on voltage of OLEDs and increasing the quantum efficiency. (c) 2005 American Institute of Physics.
URI
https://oasis.postech.ac.kr/handle/2014.oak/10559
DOI
10.1063/1.2123375
ISSN
0021-8979
Article Type
Article
Citation
JOURNAL OF APPLIED PHYSICS, vol. 98, no. 9, 2005-11-01
Files in This Item:

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이종람LEE, JONG LAM
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse