Open Access System for Information Sharing

Login Library

 

Article
Cited 5 time in webofscience Cited 7 time in scopus
Metadata Downloads

Adaptive radial basis function methods for initial value problems SCIE SCOPUS

Title
Adaptive radial basis function methods for initial value problems
Authors
Gu, JiaxiJUNG, JAE HUN
Date Issued
2020-02
Publisher
Springer
Abstract
The classical finite difference methods for solving initial value problems are based on the polynomial interpolation of the unknown solution. The expected order of convergence of every classical method is fixed regardless of the smoothness of the unknown solution. However, if the local derivatives of the solution are known or can be estimated to a certain order, such information could be used to improve the order of convergence of the local truncation error and further the order of accuracy of the global error. The aim of this paper is to utilize the radial basis function (RBF) interpolation to modify several finite difference methods and thus enhance the performance in terms of local convergence. In this work, we choose multiquadric RBFs as the interpolation basis and find the conditions of the shape parameter that could enhance accuracy. The rate of convergence of each modified method is at least the same as the original one and can be further improved by making the local truncation error vanish. In that sense, the proposed adaptive method is optimal. Compared to the linear multistep methods, the proposed adaptive RBF multistep methods exhibit higher order convergence. We provide the analysis of consistency and stability with numerical results that support our claims.
URI
https://oasis.postech.ac.kr/handle/2014.oak/105622
DOI
10.1007/s10915-020-01140-0
ISSN
0885-7474
Article Type
Article
Citation
Journal of Scientific Computing, vol. 82, no. 2, 2020-02
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse