Open Access System for Information Sharing

Login Library

 

Article
Cited 67 time in webofscience Cited 71 time in scopus
Metadata Downloads

A Wearable Surface-Enhanced Raman Scattering Sensor for Label-Free Molecular Detection SCIE SCOPUS

Title
A Wearable Surface-Enhanced Raman Scattering Sensor for Label-Free Molecular Detection
Authors
Koh, E.H.Lee, W.-C.Choi, Y.-J.Moon, J.-I.Jang, J.Park, S.-G.Choo, J.Kim, D.-H.Jung, H.S.
Date Issued
2021-01
Publisher
AMER CHEMICAL SOC
Abstract
A wearable surface-enhanced Raman scattering (SERS) sensor has been developed as a patch type to utilize as a molecular sweat sensor. Here, the SERS patch sensor is designed to comprise a sweat-absorbing layer, which is an interface to the human skin, an SERS active layer, and a dermal protecting layer that prevents damage and contaminations. A silk fibroin protein film (SFF) is a basement layer that absorbs aqueous solutions and filtrates molecules larger than the nanopores created in the beta-sheet matrix of the SFF. On the SFF layer, a plasmonic silver nanowire (AgNW) layer is formed to enhance the Raman signal of the molecules that penetrated through the SERS patch in a label-free method. A transparent dermal protecting layer (DP) allows laser penetration to the AgNW layer enabling Raman measurement through the SERS patch without its detachment from the surface. The molecular detection capability and time-dependent absorption properties of the SERS patch are investigated, and then, the feasibility of its use as a wearable drug detection sweat sensor is demonstrated using 2-fluoro-methamphetamine (2-FMA) on the human cadaver skin. It is believed that the developed SERS patch can be utilized as various flexible and wearable biosensors for healthcare monitoring.
URI
https://oasis.postech.ac.kr/handle/2014.oak/106889
DOI
10.1021/acsami.0c18892
ISSN
1944-8244
Article Type
Article
Citation
ACS APPLIED MATERIALS & INTERFACES, vol. 13, no. 2, page. 3024 - 3032, 2021-01
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

장진아JANG, JIN AH
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse