Open Access System for Information Sharing

Login Library

 

Article
Cited 0 time in webofscience Cited 39 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorHe, W.-
dc.contributor.authorYin, S.-
dc.contributor.authorKim, Y.-
dc.contributor.authorSun, X.-
dc.contributor.authorSun, X.-
dc.contributor.authorKim, J.-
dc.contributor.authorYu, S.-
dc.contributor.authorSeo, J.-
dc.date.accessioned2021-09-03T04:06:23Z-
dc.date.available2021-09-03T04:06:23Z-
dc.date.created2020-09-10-
dc.date.issued2020-07-
dc.identifier.issn2573-9603-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/106914-
dc.description.abstractIn-memory computing (IMC) has emerged as a promising technique for enhancing energy-efficiency of deep neural networks (DNN). While embedded non-volatile memory such as resistive RAM (RRAM) is a good alternative to SRAM/ DRAM for IMC owing to high density, low leakage, and non-destructive read, most prior works have not demonstrated using multi-level RRAM devices for array-level IMC operations. In this work, we present an IMC prototype with 2-bit-per-cell RRAM devices for area-/energy-efficient DNN inference. Optimizations on four-level conductance distribution and peripheral circuits with input-splitting scheme have been performed, enabling high DNN accuracy and low area/energy consumption. The prototype chip that monolithically integrated 90nm CMOS and 2-bit-per-cell RRAM array achieves 87% (83%) CIFAR-10 accuracy and 25 (51) TOPS/W energy-efficiency at 1.2 V (0.9 V) supply. At 1.2V, a stable accuracy of 87% is maintained throughout 108 hours. IEEE-
dc.languageEnglish-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.relation.isPartOfIEEE Solid-State Circuits Letters-
dc.title2-Bit-per-Cell RRAM based In-Memory Computing for Area-/Energy-Efficient Deep Learning-
dc.typeArticle-
dc.identifier.doi10.1109/LSSC.2020.3010795-
dc.type.rimsART-
dc.identifier.bibliographicCitationIEEE Solid-State Circuits Letters, v.3, pp.194 - 197-
dc.citation.endPage197-
dc.citation.startPage194-
dc.citation.titleIEEE Solid-State Circuits Letters-
dc.citation.volume3-
dc.contributor.affiliatedAuthorKim, Y.-
dc.contributor.affiliatedAuthorKim, J.-
dc.identifier.scopusid2-s2.0-85089296649-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordAuthorDeep neural networks-
dc.subject.keywordAuthorEnergy efficiency-
dc.subject.keywordAuthorin-memory computing-
dc.subject.keywordAuthormulti-level cell-
dc.subject.keywordAuthorNeural networks-
dc.subject.keywordAuthorProgramming-
dc.subject.keywordAuthorPrototypes-
dc.subject.keywordAuthorResistance-
dc.subject.keywordAuthorRRAM.-
dc.subject.keywordAuthorSemiconductor device measurement-
dc.subject.keywordAuthorSolid state circuits-
dc.description.journalRegisteredClassscopus-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김재준KIM, JAE JOON
Dept. Convergence IT Engineering
Read more

Views & Downloads

Browse