Open Access System for Information Sharing

Login Library

 

Article
Cited 24 time in webofscience Cited 22 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorChoi, Dongsic-
dc.contributor.authorGo, Gyeongyun-
dc.contributor.authorKim, Dae-Kyum-
dc.contributor.authorLee, Jaewook-
dc.contributor.authorPark, Seon-Min-
dc.contributor.authorDi Vizio, Dolores-
dc.contributor.authorGho, Yong Song-
dc.date.accessioned2021-09-03T04:23:34Z-
dc.date.available2021-09-03T04:23:34Z-
dc.date.created2020-05-21-
dc.date.issued2020-01-
dc.identifier.issn2001-3078-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/106964-
dc.description.abstractExtracellular vesicles (EVs) are nano-sized vesicles surrounded by a lipid bilayer and released into the extracellular milieu by most of cells. Although various EV isolation methods have been established, most of the current methods isolate EVs with contaminated non-vesicular proteins. By applying the label-free quantitative proteomic analyses of human colon cancer cell SW480-derived EVs, we identified trypsin-sensitive and trypsin-resistant vesicular proteins. Further systems biology and protein-protein interaction network analyses based on their cellular localization, we classified the trypsin-sensitive and trypsin-resistant vesicular proteins into two subgroups: 363 candidate real-vesicular proteins and 151 contaminated non-vesicular proteins. Moreover, the protein interaction network analyses showed that candidate real-vesicular proteins are mainly derived from plasma membrane (46.8%), cytosol (36.6%), cytoskeleton (8.0%) and extracellular region (2.5%). On the other hand, most of the contaminated non-vesicular proteins derived from nucleus, Golgi apparatus, endoplasmic reticulum and mitochondria. In addition, ribosomal protein complexes and T-complex proteins were classified as the contaminated non-vesicular proteins. Taken together, our trypsin-digested proteomic approach on EVs is an important advance to identify the real-vesicular proteins that could help to understand EV biogenesis and protein cargo-sorting mechanism during EV release, to identify more reliable EV diagnostic marker proteins, and to decode pathophysiological roles of EVs.-
dc.languageEnglish-
dc.publisherTAYLOR & FRANCIS LTD-
dc.relation.isPartOfJOURNAL OF EXTRACELLULAR VESICLES-
dc.titleQuantitative proteomic analysis of trypsin-treated extracellular vesicles to identify the real-vesicular proteins-
dc.typeArticle-
dc.identifier.doi10.1080/20013078.2020.1757209-
dc.type.rimsART-
dc.identifier.bibliographicCitationJOURNAL OF EXTRACELLULAR VESICLES, v.9, no.1-
dc.identifier.wosid000531002300001-
dc.citation.number1-
dc.citation.titleJOURNAL OF EXTRACELLULAR VESICLES-
dc.citation.volume9-
dc.contributor.affiliatedAuthorGo, Gyeongyun-
dc.contributor.affiliatedAuthorGho, Yong Song-
dc.identifier.scopusid2-s2.0-85084368847-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.type.docTypeArticle-
dc.subject.keywordPlusEXOSOMES-
dc.subject.keywordPlusTRANSCRIPTOMICS-
dc.subject.keywordPlusMICROVESICLES-
dc.subject.keywordPlusEXPRESSION-
dc.subject.keywordPlusADHESION-
dc.subject.keywordPlusDATABASE-
dc.subject.keywordPlusPATHWAY-
dc.subject.keywordPlusEVPEDIA-
dc.subject.keywordAuthorExtracellular vesicles-
dc.subject.keywordAuthorexosomesproteomics-
dc.subject.keywordAuthortrypsin-
dc.subject.keywordAuthorprotease-
dc.subject.keywordAuthorcontaminated non-vesicular proteins-
dc.subject.keywordAuthorultracentrifuge-
dc.relation.journalWebOfScienceCategoryCell Biology-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaCell Biology-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse