Open Access System for Information Sharing

Login Library

 

Article
Cited 20 time in webofscience Cited 21 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorBaek, Seung-Ho-
dc.contributor.authorOk, Jong Mok-
dc.contributor.authorKim, Jun Sung-
dc.contributor.authorAswartham, Saicharan-
dc.contributor.authorMorozov, Igor-
dc.contributor.authorChareev, Dmitriy-
dc.contributor.authorUrata, Takahiro-
dc.contributor.authorTanigaki, Katsumi-
dc.contributor.authorTanabe, Yoichi-
dc.contributor.authorBuechner, Bernd-
dc.contributor.authorEfremov, Dmitri V.-
dc.date.accessioned2021-09-03T04:24:16Z-
dc.date.available2021-09-03T04:24:16Z-
dc.date.created2020-03-04-
dc.date.issued2020-01-
dc.identifier.issn2397-4648-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/106965-
dc.description.abstractThe interplay of orbital and spin degrees of freedom is the fundamental characteristic in numerous condensed matter phenomena, including high-temperature superconductivity, quantum spin liquids, and topological semimetals. In iron-based superconductors (FeSCs), this causes superconductivity to emerge in the vicinity of two other instabilities: nematic and magnetic. Unveiling the mutual relationship among nematic order, spin fluctuations, and superconductivity has been a major challenge for research in FeSCs, but it is still controversial. Here, by carrying out Se-77 nuclear magnetic resonance (NMR) measurements on FeSe single crystals, doped by cobalt and sulfur that serve as control parameters, we demonstrate that the superconducting transition temperature T-c increases in proportion to the strength of spin fluctuations, while it is independent of the nematic transition temperature T-nem. Our observation therefore directly implies that superconductivity in FeSe is essentially driven by spin fluctuations in the intermediate coupling regime, while nematic fluctuations have a marginal impact on T-c.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.relation.isPartOfNPJ QUANTUM MATERIALS-
dc.titleSeparate tuning of nematicity and spin fluctuations to unravel the origin of superconductivity in FeSe-
dc.typeArticle-
dc.identifier.doi10.1038/s41535-020-0211-y-
dc.type.rimsART-
dc.identifier.bibliographicCitationNPJ QUANTUM MATERIALS, v.5, no.1-
dc.identifier.wosid000511972300002-
dc.citation.number1-
dc.citation.titleNPJ QUANTUM MATERIALS-
dc.citation.volume5-
dc.contributor.affiliatedAuthorKim, Jun Sung-
dc.identifier.scopusid2-s2.0-85078839257-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.type.docTypeArticle-
dc.subject.keywordPlusSINGLE-CRYSTAL GROWTH-
dc.subject.keywordPlusNORMAL-STATE-
dc.subject.keywordPlusORDER-
dc.subject.keywordPlusMODEL-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryQuantum Science & Technology-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse