Open Access System for Information Sharing

Login Library

 

Article
Cited 119 time in webofscience Cited 127 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorNGUYEN, THI CAM NHUNG-
dc.contributor.authorAsghari-Rad, Peyman-
dc.contributor.authorSathiyamoorthi, Praveen-
dc.contributor.authorZargaran, Alireza-
dc.contributor.authorLee, Chong Soo-
dc.contributor.authorKim, Hyoung Seop-
dc.date.accessioned2021-10-05T01:50:13Z-
dc.date.available2021-10-05T01:50:13Z-
dc.date.created2020-07-14-
dc.date.issued2020-06-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/107225-
dc.description.abstractSuperplasticity describes a material's ability to sustain large plastic deformation in the form of a tensile elongation to over 400% of its original length, but is generally observed only at a low strain rate (similar to 10(-4)s(-1)), which results in long processing times that are economically undesirable for mass production. Superplasticity at high strain rates in excess of 10(-2)s(-1), required for viable industry-scale application, has usually only been achieved in low-strength aluminium and magnesium alloys. Here, we present a superplastic elongation to 2000% of the original length at a high strain rate of 5x10(-2)s(-1) in an Al-9(CoCrFeMnNi)(91) (at%) high-entropy alloy nanostructured using high-pressure torsion. The high-pressure torsion induced grain refinement in the multi-phase alloy combined with limited grain growth during hot plastic deformation enables high strain rate superplasticity through grain boundary sliding accommodated by dislocation activity.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.relation.isPartOfNATURE COMMUNICATIONS-
dc.titleUltrahigh high-strain-rate superplasticity in a nanostructured high-entropy alloy-
dc.typeArticle-
dc.identifier.doi10.1038/s41467-020-16601-1-
dc.type.rimsART-
dc.identifier.bibliographicCitationNATURE COMMUNICATIONS, v.11, no.1-
dc.identifier.wosid000542983700005-
dc.citation.number1-
dc.citation.titleNATURE COMMUNICATIONS-
dc.citation.volume11-
dc.contributor.affiliatedAuthorNGUYEN, THI CAM NHUNG-
dc.contributor.affiliatedAuthorAsghari-Rad, Peyman-
dc.contributor.affiliatedAuthorSathiyamoorthi, Praveen-
dc.contributor.affiliatedAuthorZargaran, Alireza-
dc.contributor.affiliatedAuthorLee, Chong Soo-
dc.contributor.affiliatedAuthorKim, Hyoung Seop-
dc.identifier.scopusid2-s2.0-85085854119-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.type.docTypeArticle-
dc.subject.keywordPlusSUBMICROMETER-GRAINED 5083-AL-ALLOY-
dc.subject.keywordPlusLOW-TEMPERATURE SUPERPLASTICITY-
dc.subject.keywordPlusSEVERE PLASTIC-DEFORMATION-
dc.subject.keywordPlusBOUNDARY DIFFUSION-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusFRACTURE-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이종수LEE, CHONG SOO
Ferrous & Energy Materials Technology
Read more

Views & Downloads

Browse