Open Access System for Information Sharing

Login Library

 

Article
Cited 11 time in webofscience Cited 13 time in scopus
Metadata Downloads

Tuning the Surface Chemistry of Chiral Cu(531)S for Enhanced Enantiospecific Adsorption of Amino Acids SCIE SCOPUS

Title
Tuning the Surface Chemistry of Chiral Cu(531)S for Enhanced Enantiospecific Adsorption of Amino Acids
Authors
Song, Ho SeongHAN, JEONG WOO
Date Issued
2015-07-09
Publisher
American Chemical Society
Abstract
Amino acids are important bioorganic compounds composed of amine and carboxylic acid because they are the main building blocks of many biomolecules. All of them are chiral except glycine. Thus, they have two enantiomers which provide dramatically different biological effects, thereby requiring their separation. High Miller index metal surfaces often define intrinsically chiral structures. A number of previous studies have proved the enantiospecific adsorption difference of chiral molecules on those surfaces. To further enhance the enantiospecificity, step decoration, which is doping the kink site of chiral metal surface with a second metal, can be one route. It may induce one enantiomer adsorbed on the surface to become more stable than the other, inducing the larger enantiospecific energy difference. In this study, we performed density functional theory (DFT) calculations to systemically examine the adsorption geometries and energetics of each enantiomer of alanine, serine, and cysteine, and their enantiospecific energy differences on pure, Pd-, Pt-, and Au-decorated Cu(531)(S), respectively. By decorating the kinked site with an Au atom, the enantiospecificity of adsorbed cysteine was meaningfully enhanced by 0.08 eV, in the case when the side chain has a high affinity with the surface. Our results provide useful insight of how to tune chiral metal surfaces to enlarge the enantiospecificity of chiral molecules.
URI
https://oasis.postech.ac.kr/handle/2014.oak/107531
DOI
10.1021/acs.jpcc.5b02695
ISSN
1932-7447
Article Type
Article
Citation
Journal of Physical Chemistry C, vol. 119, no. 27, page. 15195 - 15203, 2015-07-09
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

한정우HAN, JEONG WOO
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse