Open Access System for Information Sharing

Login Library

 

Article
Cited 8 time in webofscience Cited 8 time in scopus
Metadata Downloads

Insights into the Li Diffusion Dynamics and Nanostructuring of H2Ti12O25 To Enhance Its Li Storage Performance SCIE SCOPUS

Title
Insights into the Li Diffusion Dynamics and Nanostructuring of H2Ti12O25 To Enhance Its Li Storage Performance
Authors
Park, SoominYoo, Young GeunNam, InhoBae, SeongjunPark, JongseokHAN, JEONG WOOYi, Jongheop
Date Issued
2016-05-18
Publisher
American Chemical Society
Abstract
Dodecatitanate H2Ti12O25 crystal has a condensed layered structure and exhibits noteworthy Li storage performance that makes it an anode material with great potential for use in Li-ion batteries. However, an unknown Li diffusion mechanism and a sluggish level of Li dynamics through elongated diffusion paths inside this crystal has impeded any forward development in resolving its limited rate capability and cyclic stability. In this study, we investigated the Li diffusion dynamics inside the H2Ti12O25 crystal that play an essential role in Li storage performance. A study of density functional theory combined with experimental evaluation confirmed a strong dependence of Li storage performance on its diffusion. In addition, a nanostructured H2Ti12O25 containing a bundle of nanorods is developed via the introduction of a kinetic gap during the structural transformation, which conferred a significantly shortened diffusion time/length for Li in H2Ti12O25. The nanostructured H2Ti12O25 has high specific capacity (similar to 230 mAh g(-1)) and exhibits enhanced cyclic stability and rate capability compared with conventional bulky H2Ti12O25. The H2Ti12O25 proposed in this study has high potential for use as an anode material with excellent safety and stability. Dodecatitanate H2Ti12O25 crystal has a condensed layered structure and exhibits noteworthy Li storage performance that makes it an anode material with great potential for use in Li-ion batteries. However, an unknown Li diffusion mechanism and a sluggish level of Li dynamics through elongated diffusion paths inside this crystal has impeded any forward development in resolving its limited rate capability and cyclic stability. In this study, we investigated the Li diffusion dynamics inside the H2Ti12O25 crystal that play an essential role in Li storage performance. A study of density functional theory combined with experimental evaluation confirmed a strong dependence of Li storage performance on its diffusion. In addition, a nanostructured H2Ti12O25 containing a bundle of nanorods is developed via the introduction of a kinetic gap during the structural transformation, which conferred a significantly shortened diffusion time/length for Li in H2Ti12O25. The nanostructured H2Ti12O25 has high specific capacity (similar to 230 mAh g(-1)) and exhibits enhanced cyclic stability and rate capability compared with conventional bulky H2Ti12O25. The H2Ti12O25 proposed in this study has high potential for use as an anode material with excellent safety and stability.
URI
https://oasis.postech.ac.kr/handle/2014.oak/107577
DOI
10.1021/acsami.6b02842
ISSN
1944-8244
Article Type
Article
Citation
ACS Applied Materials and Interfaces, vol. 8, no. 19, page. 12186 - 12193, 2016-05-18
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

한정우HAN, JEONG WOO
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse