Open Access System for Information Sharing

Login Library

 

Article
Cited 49 time in webofscience Cited 57 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorPark, Kyu‐Young-
dc.contributor.authorZhu, Yizhou-
dc.contributor.authorTorres‐Castanedo, Carlos G.-
dc.contributor.authorJung, Hee Joon-
dc.contributor.authorLuu, Norman S.-
dc.contributor.authorKahvecioglu, Ozge-
dc.contributor.authorYoo, Yiseul-
dc.contributor.authorSeo, Jung‐Woo T.-
dc.contributor.authorDowning, Julia R.-
dc.contributor.authorLim, Hee‐Dae-
dc.contributor.authorBedzyk, Michael J.-
dc.contributor.authorWolverton, Christopher-
dc.contributor.authorHersam, Mark C.-
dc.date.accessioned2021-12-02T08:35:24Z-
dc.date.available2021-12-02T08:35:24Z-
dc.date.created2021-11-30-
dc.date.issued2022-01-
dc.identifier.issn0935-9648-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/107711-
dc.description.abstractLiNiO2 (LNO) is a promising cathode material for next-generation Li-ion batteries due to its exceptionally high capacity and cobalt-free composition that enables more sustainable and ethical large-scale manufacturing. However, its poor cycle life at high operating voltages over 4.1 V impedes its practical use, thus motivating efforts to elucidate and mitigate LiNiO2 degradation mechanisms at high states of charge. Here, a multiscale exploration of high-voltage degradation cascades associated with oxygen stacking chemistry in cobalt-free LiNiO2, is presented. Lattice oxygen loss is found to play a critical role in the local O3–O1 stacking transition at high states of charge, which subsequently leads to Ni-ion migration and irreversible stacking faults during cycling. This undesirable atomic-scale structural evolution accelerates microscale electrochemical creep, cracking, and even bending of layers, ultimately resulting in macroscopic mechanical degradation of LNO particles. By employing a graphene-based hermetic surface coating, oxygen loss is attenuated in LNO at high states of charge, which suppresses the initiation of the degradation cascade and thus substantially improves the high-voltage capacity retention of LNO. Overall, this study provides mechanistic insight into the high-voltage degradation of LNO, which will inform ongoing efforts to employ cobalt-free cathodes in Li-ion battery technology. © 2021 Wiley-VCH GmbH-
dc.languageEnglish-
dc.publisherWILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.relation.isPartOfAdvanced Materials-
dc.titleElucidating and Mitigating High‐Voltage Degradation Cascades in Cobalt‐Free LiNiO2 Lithium‐Ion Battery Cathodes-
dc.typeArticle-
dc.identifier.doi10.1002/adma.202106402-
dc.type.rimsART-
dc.identifier.bibliographicCitationAdvanced Materials, v.34, no.3-
dc.identifier.wosid000745097300042-
dc.citation.number3-
dc.citation.titleAdvanced Materials-
dc.citation.volume34-
dc.contributor.affiliatedAuthorPark, Kyu‐Young-
dc.identifier.scopusid2-s2.0-85119373451-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusSTRUCTURAL CHARACTERIZATION-
dc.subject.keywordPlusOXIDE CATHODE-
dc.subject.keywordPlusELECTROCHEMISTRY-
dc.subject.keywordPlusPHASE-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusLIXNIO2-
dc.subject.keywordAuthorgraphene coating-
dc.subject.keywordAuthorlithium battery-
dc.subject.keywordAuthorlithium nickel oxide-
dc.subject.keywordAuthoroxygen evolution-
dc.subject.keywordAuthorstacking faults-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse