Open Access System for Information Sharing

Login Library

 

Article
Cited 7 time in webofscience Cited 8 time in scopus
Metadata Downloads

Enhancing nanostructured nickel-rich lithium-ion battery cathodes via surface stabilization SCIE SCOPUS

Title
Enhancing nanostructured nickel-rich lithium-ion battery cathodes via surface stabilization
Authors
Lim, Jin-MyoungLuu, Norman S.Park, Kyu-YoungTan, Mark T. Z.Kim, SungkyuDowning, Julia R.He, KaiDravid, Vinayak P.Hersam, Mark C.
Date Issued
2020-12
Publisher
American Institute of Physics
Abstract
Layered, nickel-rich lithium transition metal oxides have emerged as leading candidates for lithium-ion battery (LIB) cathode materials. High-performance applications for nickel-rich cathodes, such as electric vehicles and grid-level energy storage, demand electrodes that deliver high power without compromising cell lifetimes or impedance. Nanoparticle-based nickel-rich cathodes seemingly present a solution to this challenge due to shorter lithium-ion diffusion lengths compared to incumbent micrometer-scale active material particles. However, since smaller particle sizes imply that surface effects become increasingly important, particle surface chemistry must be well characterized and controlled to achieve robust electrochemical properties. Moreover, residual surface impurities can disrupt commonly used carbon coating schemes, which result in compromised cell performance. Using x-ray photoelectron spectroscopy, here we present a detailed characterization of the surface chemistry of LiNi0.8Al0.15Co0.05O2 (NCA) nanoparticles, ultimately identifying surface impurities that limit LIB performance. With this chemical insight, annealing procedures are developed that minimize these surface impurities, thus improving electrochemical properties and enabling conformal graphene coatings that reduce cell impedance, maximize electrode packing density, and enhance cell lifetime fourfold. Overall, this work demonstrates that controlling and stabilizing surface chemistry enables the full potential of nanostructured nickel-rich cathodes to be realized in high-performance LIB technology.
URI
https://oasis.postech.ac.kr/handle/2014.oak/107732
DOI
10.1116/6.0000580
ISSN
0734-2101
Article Type
Article
Citation
Journal of Vacuum Science and Technology A, vol. 38, no. 6, page. 063210, 2020-12
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse