Open Access System for Information Sharing

Login Library

 

Article
Cited 32 time in webofscience Cited 35 time in scopus
Metadata Downloads

Flexible MoS2–Polyimide Electrode for Electrochemical Biosensors and Their Applications for the Highly Sensitive Quantification of Endocrine Hormones: PTH, T3, and T4 SCIE SCOPUS

Title
Flexible MoS2–Polyimide Electrode for Electrochemical Biosensors and Their Applications for the Highly Sensitive Quantification of Endocrine Hormones: PTH, T3, and T4
Authors
Kim, Hyeong-UKim, Hye YounSeok, HyunhoKanade, VinitYoo, HocheonPark, Kyu-YoungLee, Jae-HyunLee, Min-HoKim, Taesung
Date Issued
2020-05
Publisher
American Chemical Society
Abstract
Flexibile biosensors have a lot of applications in measuring the concentration of target bioanalytes. In combination with its flexibility, electrochemical sensors containing 2D materials have particular advantages such as enlarged area compatibility, transparency, and high scalability. A flexible biosensor was fabricated by direct synthesis of molybdenum disulfide (MoS2) on a polyimide (PI) substrate, which can be used as the working electrode in electrochemistry platforms. The direct formation of 2D-MoS2 on the PI was achieved using plasma-enhanced chemical vapor deposition (PE-CVD). Since the MoS2 provides higher electrical conductivity, the MoS2-Au-PI flexible sensor is able to provide highly sensitive detection of target proteins with a relatively fast response via cyclic voltammetry. To evaluate the high performance of the fabricated sensor, we selected the endocrine-related hormones parathyroid hormone (PTH), triiodothyronine (T3), and thyroxine (T4) as analytes because they are one of the most important markers for the determination of endocrinopathy, however, they are very difficult to quantify. The newly developed biosensor achieved highly sensitive detection of the hormones and could determine their location with high accuracy. In addition, we performed electrochemical measurements of hormones obtained from 30 clinical patients' sera with confirmed agreement and compared with the measurements performed with standard immunoassay equipment (E 170, Roche Diagnostics, Germany).
URI
https://oasis.postech.ac.kr/handle/2014.oak/107738
DOI
10.1021/acs.analchem.9b05172
ISSN
0003-2700
Article Type
Article
Citation
Analytical Chemistry, vol. 92, no. 9, page. 6327 - 6333, 2020-05
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse