Open Access System for Information Sharing

Login Library

 

Article
Cited 22 time in webofscience Cited 25 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorKim, Suhyeok-
dc.contributor.authorJoo, Kye Il-
dc.contributor.authorJo, Byung Hoon-
dc.contributor.authorCha, Hyung Joon-
dc.date.accessioned2021-12-03T09:24:46Z-
dc.date.available2021-12-03T09:24:46Z-
dc.date.created2020-07-14-
dc.date.issued2020-06-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/107881-
dc.description.abstractExploiting carbonic anhydrase (CA), an enzyme that catalyzes the hydration of CO2, is a powerful route for ecofriendly and cost-effective carbon capture and utilization. For successful industrial applications, the stability and reusability of CA should be improved, which necessitates enzyme immobilization. Herein, the ribosomal protein L2 (Si-tag) from Escherichia coli was utilized for the immobilization of CA onto diatom biosilica, a promising renewable support material. The Si-tag was redesigned (L2NC) and genetically fused to CA from the marine bacterium Hydrogenovibrio marinus (hmCA). One-step self-immobilization of hmCA-L2NC onto diatom biosilica by simple mixing was successfully achieved via Si-tag-mediated strong binding, showing multilayer adsorption with a maximal loading of 1.4 wt %. The immobilized enzyme showed high reusability and no enzyme leakage even under high temperature conditions. The activity of hmCA-L2NC was inversely proportional to the enzyme loading, while the stability was directly proportional to the enzyme loading. This discovered activity-stability trade-off phenomenon could be attributed to macromolecular crowding on the highly dense surface of the enzyme-immobilized biosilica. Collectively, our system not only facilitates the stability-controllable self-immobilization of enzyme via Si-tag on a diatom biosilica support for the robust, facile, and green construction of stable biocatalysts, but is also a unique model for studying the macromolecular crowding effect on surface-immobilized enzymes.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.relation.isPartOfACS APPLIED MATERIALS & INTERFACES-
dc.titleStability-Controllable Self-Immobilization of Carbonic Anhydrase Fused with a Silica-Binding Tag onto Diatom Biosilica for Enzymatic CO2 Capture and Utilization-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.0c03804-
dc.type.rimsART-
dc.identifier.bibliographicCitationACS APPLIED MATERIALS & INTERFACES, v.12, no.24, pp.27055 - 27063-
dc.identifier.wosid000542925300027-
dc.citation.endPage27063-
dc.citation.number24-
dc.citation.startPage27055-
dc.citation.titleACS APPLIED MATERIALS & INTERFACES-
dc.citation.volume12-
dc.contributor.affiliatedAuthorKim, Suhyeok-
dc.contributor.affiliatedAuthorJoo, Kye Il-
dc.contributor.affiliatedAuthorCha, Hyung Joon-
dc.identifier.scopusid2-s2.0-85086681799-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusSI-TAG-
dc.subject.keywordPlusPROTEINS-
dc.subject.keywordPlusDIOXIDE-
dc.subject.keywordPlusBIOCATALYST-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusCONVERSION-
dc.subject.keywordPlusENZYMES-
dc.subject.keywordPlusLIPASES-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusCELITE-
dc.subject.keywordAuthorcarbonic anhydrase-
dc.subject.keywordAuthorsilica-binding tag-
dc.subject.keywordAuthorbiosilica-
dc.subject.keywordAuthorHydrogenovibrio marinus-
dc.subject.keywordAuthorenzyme immobilization-
dc.subject.keywordAuthormactomolecular crowding-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

차형준CHA, HYUNG JOON
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse