Open Access System for Information Sharing

Login Library

 

Article
Cited 53 time in webofscience Cited 56 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorAkbarpour, M. R.-
dc.contributor.authorMirabad, H. Mousa-
dc.contributor.authorAlipour, S.-
dc.contributor.authorKim, H. S.-
dc.date.accessioned2021-12-03T10:20:11Z-
dc.date.available2021-12-03T10:20:11Z-
dc.date.created2020-03-25-
dc.date.issued2020-01-
dc.identifier.issn0921-5093-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/107935-
dc.description.abstractUsing flake powder metallurgy (FPM) technique, combined with high pressure torsion, super high strength-ductile Cu-CNT nanocomposite with high electrical conductivity is developed. The nanocomposite with 4 vol % CNT showed high tensile strength of similar to 474 MPa, high electrical conductivity of similar to 82.5% IACS as well as appreciable ductility of similar to 11%. According to microstructural studies, the excellent properties of the nanocomposite are attributed to the formation of trimodal grains, high density of twin and low angle grain boundaries, improvement in CNT and Cu interfacial bonding, and appropriate distribution and maintaining the microstructure of the nanotubes in the production process. The results of this work provide a new pathway to produce strong, conductive, and ductile metal matrix nanocomposites.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.relation.isPartOfMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING-
dc.titleEnhanced tensile properties and electrical conductivity of Cu-CNT nanocomposites processed via the combination of flake powder metallurgy and high pressure torsion methods-
dc.typeArticle-
dc.identifier.doi10.1016/j.msea.2019.138888-
dc.type.rimsART-
dc.identifier.bibliographicCitationMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, v.773-
dc.identifier.wosid000513985200040-
dc.citation.titleMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING-
dc.citation.volume773-
dc.contributor.affiliatedAuthorKim, H. S.-
dc.identifier.scopusid2-s2.0-85077329475-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusCARBON NANOTUBES-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusMATRIX COMPOSITES-
dc.subject.keywordPlusCOPPER-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusMICROSTRUCTURES-
dc.subject.keywordPlusREINFORCEMENT-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusIMPROVEMENT-
dc.subject.keywordPlusSTRENGTH-
dc.subject.keywordAuthorCopper-
dc.subject.keywordAuthorCarbon nanotube-
dc.subject.keywordAuthorHigh pressure torsion (HPT)-
dc.subject.keywordAuthorStrengthening-
dc.subject.keywordAuthorNanocomposite-
dc.subject.keywordAuthorFlake powder metallurgy-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김형섭KIM, HYOUNG SEOP
Ferrous & Eco Materials Technology
Read more

Views & Downloads

Browse