Open Access System for Information Sharing

Login Library

 

Article
Cited 58 time in webofscience Cited 56 time in scopus
Metadata Downloads

Role of molecular orbitals of the benzene in electronic nanodevices SCIE SCOPUS

Title
Role of molecular orbitals of the benzene in electronic nanodevices
Authors
Choi, YCKim, WYPark, KSTarakeshwar, PKim, KSKim, TSLee, JY
Date Issued
2005-03-01
Publisher
AMER INST PHYSICS
Abstract
In an effort to examine the intricacies of electronic nanodevices, we present an atomistic description of the electronic transport properties of an isolated benzene molecule. We have carried out ab initio calculations to understand the modulation of the molecular orbitals (MOs) and their energy spectra under the external electric field, and conducting behavior of the benzene molecule. Our study shows that with an increase in the applied electric field, the energy of the third lowest unoccupied molecular orbital (LUMO) of benzene decreases, while the first and second LUMO energies are not affected. Above a certain threshold of the external electric field, the third LUMO is lowered below the original LUMO and becomes the real LUMO. Since the transport through a molecule is to a large extent mediated by the molecular orbitals, the change in MOs can lead to a dramatic increase in the current passing through the benzene molecule. Thus, in the course of this study, we show that the modulation of the molecular orbitals in the presence of a tuning parameter(s) such as the external electric field can play important roles in the operation of molecular devices. We believe that this understanding would be helpful in the design of electronic nanodevices. (C) 2005 American Institute of Physics.
URI
https://oasis.postech.ac.kr/handle/2014.oak/10801
DOI
10.1063/1.1858851
ISSN
0021-9606
Article Type
Article
Citation
JOURNAL OF CHEMICAL PHYSICS, vol. 122, no. 9, 2005-03-01
Files in This Item:

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse