Open Access System for Information Sharing

Login Library

 

Article
Cited 45 time in webofscience Cited 49 time in scopus
Metadata Downloads

Applications of computational thermodynamics - the extension from phase equilibrium to phase transformations and other properties SCIE SCOPUS

Title
Applications of computational thermodynamics - the extension from phase equilibrium to phase transformations and other properties
Authors
Silva, ACEAgren, JClavaguera-Mora, MTDjurovic, DGomez-Acebo, TLee, BJLiu, ZKMiodownik, PSeifert, HJ
Date Issued
2007-03
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Abstract
Complex equilibria and phase transformations involving diffusion can now be calculated quickly and efficiently. Detailed examples are given for cases which involve varying degrees of non-equilibrium and therefore time-dependence. Despite very good agreement between such calculations and experimental results, many potential end-users are still not convinced that such techniques could be usefully applied to their own specific problems. Friendly graphic interface versions of calculating software are now generally available, so the authors conclude that the most likely source of the reluctance to use such tools lies in the formulation of relevant questions and the interpretation of the results. Although the potential impact of such tools was foreseen many years ago [M. Hillert, Calculation of phase equilibria, in: Conference on Phase Transformations, 1968], few changes in the relevant teaching curricula have taken into account the availability and power of such techniques. This paper has therefore been designed not only as a collection of interesting problems, but also highlights the critical steps needed to achieve a solution. Each example includes a presentation of the "real" problem, any simplifications that are needed for its solution, the adopted thermodynamic formulation, and a critical evaluation of the results. The availability of such examples should facilitate changes in subject matter that will both make it easier for the next generation of students to use these tools, and at the same time reduce the time and effort currently needed to solve such problems by less efficient methods. The first set of detailed examples includes the deoxidation of steel by aluminum; heat balance calculations associated with ladle additions to steel; the determination of conditions that avoid undesirable inclusions; the role of methane in sintering atmospheres; interface control during the physical vapour deposition of cemented carbide; oxidation of gamma-TiAl materials; and simulation of the thermolysis of metallorganic precursors for Si-C-N ceramics and interface reaction of yttrium silicates with SiC-coated C/C-SiC composites for heat shield applications. A second set of examples, more dependent on competitive nucleation and growth, includes segregation and carburization in multicomponent steels and features a series of sophisticated simulatons using DICTRA software. Interfacial and strain energies become increasingly important in defining phase nucleation and morphology in such problems, but relatively little information is available compared to free energy and diffusion databases. The final section therefore demonstrates how computational thermodynamics, semi-empirical atomistic approaches and first-principles calculations are being used to aid filling this gap in our knowledge. (c) 2006 Elsevier Ltd. All rights reserved.
Keywords
NI-AL ALLOYS; MULTICOMPONENT DIFFUSION; SINTERING ATMOSPHERES; SI-(B-)C-N CERAMICS; CUTTING TOOLS; BONDING LAYER; KINETICS; NUCLEATION; SYSTEMS; CARBIDE
URI
https://oasis.postech.ac.kr/handle/2014.oak/108113
DOI
10.1016/j.calphad.2006.02.006
ISSN
0364-5916
Article Type
Article
Citation
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, vol. 31, no. 1, page. 53 - 74, 2007-03
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이병주LEE, BYEONG JOO
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse