Open Access System for Information Sharing

Login Library

 

Article
Cited 11 time in webofscience Cited 11 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorPark, JW-
dc.contributor.authorRhee, YM-
dc.date.accessioned2015-06-25T02:22:24Z-
dc.date.available2015-06-25T02:22:24Z-
dc.date.created2015-02-04-
dc.date.issued2014-04-28-
dc.identifier.issn0021-9606-
dc.identifier.other2015-OAK-0000031654en_US
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/10837-
dc.description.abstractSimulating molecular dynamics directly on quantum chemically obtained potential energy surfaces is generally time consuming. The cost becomes overwhelming especially when excited state dynamics is aimed with multiple electronic states. The interpolated potential has been suggested as a remedy for the cost issue in various simulation settings ranging from fast gas phase reactions of small molecules to relatively slow condensed phase dynamics with complex surrounding. Here, we present a scheme for interpolating multiple electronic surfaces of a relatively large molecule, with an intention of applying it to studying nonadiabatic behaviors. The scheme starts with adiabatic potential information and its diabatic transformation, both of which can be readily obtained, in principle, with quantum chemical calculations. The adiabatic energies and their derivatives on each interpolation center are combined with the derivative coupling vectors to generate the corresponding diabatic Hamiltonian and its derivatives, and they are subsequently adopted in producing a globally defined diabatic Hamiltonian function. As a demonstration, we employ the scheme to build an interpolated Hamiltonian of a relatively large chromophore, para-hydroxybenzylidene imidazolinone, in reference to its all-atom analytical surface model. We show that the interpolation is indeed reliable enough to reproduce important features of the reference surface model, such as its adiabatic energies and derivative couplings. In addition, nonadiabatic surface hopping simulations with interpolation yield population transfer dynamics that is well in accord with the result generated with the reference analytic surface. With these, we conclude by suggesting that the interpolation of diabatic Hamiltonians will be applicable for studying nonadiabatic behaviors of sizeable molecules. (C) 2014 AIP Publishing LLC.-
dc.description.statementofresponsibilityopenen_US
dc.languageEnglish-
dc.publisherAMER INST PHYSICS-
dc.relation.isPartOfJOURNAL OF CHEMICAL PHYSICS-
dc.rightsBY_NC_NDen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.0/kren_US
dc.subjectMULTICONFIGURATION MOLECULAR-MECHANICS-
dc.subjectSHEPARD INTERPOLATION-
dc.subjectSEMIEMPIRICAL METHODS-
dc.subjectAQUEOUS-SOLUTION-
dc.subjectGFP CHROMOPHORE-
dc.subjectDYNAMICS-
dc.subjectSYSTEMS-
dc.subjectCOMPLEX-
dc.subjectSTATE-
dc.subjectDECAY-
dc.titleConstructing polyatomic potential energy surfaces by interpolating diabatic Hamiltonian matrices with demonstration on green fluorescent protein chromophore-
dc.typeArticle-
dc.contributor.college화학과en_US
dc.identifier.doi10.1063/1.4872155-
dc.author.googlePark, JWen_US
dc.author.googleRhee, YMen_US
dc.relation.volume140en_US
dc.relation.issue16en_US
dc.contributor.id10200056en_US
dc.relation.journalJOURNAL OF CHEMICAL PHYSICSen_US
dc.relation.indexSCI급, SCOPUS 등재논문en_US
dc.relation.sciSCIen_US
dc.collections.nameJournal Papersen_US
dc.type.rimsART-
dc.identifier.bibliographicCitationJOURNAL OF CHEMICAL PHYSICS, v.140, no.16-
dc.identifier.wosid000336047700019-
dc.date.tcdate2019-01-01-
dc.citation.number16-
dc.citation.titleJOURNAL OF CHEMICAL PHYSICS-
dc.citation.volume140-
dc.contributor.affiliatedAuthorRhee, YM-
dc.identifier.scopusid2-s2.0-84899810130-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc7-
dc.description.scptc7*
dc.date.scptcdate2018-10-274*
dc.type.docTypeArticle-
dc.subject.keywordPlusMULTICONFIGURATION MOLECULAR-MECHANICS-
dc.subject.keywordPlusSHEPARD INTERPOLATION-
dc.subject.keywordPlusSEMIEMPIRICAL METHODS-
dc.subject.keywordPlusAQUEOUS-SOLUTION-
dc.subject.keywordPlusGFP CHROMOPHORE-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordPlusCOMPLEX-
dc.subject.keywordPlusSTATE-
dc.subject.keywordPlusDECAY-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryPhysics, Atomic, Molecular & Chemical-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse