Open Access System for Information Sharing

Login Library

 

Article
Cited 5 time in webofscience Cited 5 time in scopus
Metadata Downloads

Excellent strength-ductility combination of multi-layered sheets composed of high-strength V10Cr10Fe50Co30 high entropy alloy and 304 austenitic stainless steel SCIE SCOPUS

Title
Excellent strength-ductility combination of multi-layered sheets composed of high-strength V10Cr10Fe50Co30 high entropy alloy and 304 austenitic stainless steel
Authors
Kim, Dong GeunJo, Yong HeeSong, TaejinKim, Hyoung SeopLee, Byeong-JooSohn, Seok SuLee, Sunghak
Date Issued
2021-08
Publisher
ELSEVIER SCIENCE SA
Abstract
When a high-entropy alloy (HEA) and an austenitic stainless steel (STS) are combined to produce a multi-layered sheet (MLS), the synergic effects of maximized body-centered-cubic(BCC) transformation-induced plasticity (TRIP) occurring in both HEA and STS on excellent tensile properties are expected. In this study, the tensile properties of STS/HEA/STS MLS, fabricated by hot-roll bonding, were compared with those of monolithic HEA and STS sheets. Both the HEA and STS layers of the MLS consisted of FCC grains, while some BCC grains occurred mostly in the HEA layer. The measured tensile properties were higher than the calculated values based on the rule of mixtures, and showed very high levels of tensile strength (803 and 1774 MPa at 25 degrees C and -196 degrees C, respectively) with sufficient elongation (44% and 72%, respectively). This result was attributed to the robust TRIP mechanism occurring step-by-step in the HEA and STS layers, along with the accommodation of the strain gradient near the strongly bonded HEA/STS interface. The step-by-step TRIP played a leading role in tuning the enormous BCC-TRIP occurring in both the HEA and STS layers, while taking complete advantage of the high strength-ductility balance.
URI
https://oasis.postech.ac.kr/handle/2014.oak/109047
DOI
10.1016/j.msea.2021.141727
ISSN
0921-5093
Article Type
Article
Citation
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, vol. 823, 2021-08
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이병주LEE, BYEONG JOO
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse