Open Access System for Information Sharing

Login Library

 

Article
Cited 25 time in webofscience Cited 26 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorKwon, Hyeonseok-
dc.contributor.authorSathiyamoorthi, Praveen-
dc.contributor.authorKarthik, Gangaraju Manogna-
dc.contributor.authorAsghari-Rad, Peyman-
dc.contributor.authorZargaran, Alireza-
dc.contributor.authorDo, Hyeon-Seok-
dc.contributor.authorLee, Byeong-Joo-
dc.contributor.authorKato, Hidemi-
dc.contributor.authorKim, Hyoung Seop-
dc.date.accessioned2022-01-05T04:40:29Z-
dc.date.available2022-01-05T04:40:29Z-
dc.date.created2021-11-01-
dc.date.issued2021-11-
dc.identifier.issn1359-6462-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/109071-
dc.description.abstractA novel non-equiatomic FeCoNiAlTiMo ferrous medium-entropy alloy (MEA) with ultra-high tensile strengths at 298 and 77 K is presented in this work. By subjecting the MEA to hot rolling without further heat treatment, a quasi-dual-phase microstructure consisting of retained face-centered cubic (FCC) and thermal body-centered cubic martensite (BCC) phases with a very high density of dislocations and precipitates of Mo-rich mu phase was created. The high dislocation density significantly accelerated deformation-induced martensitic transformation from the remaining metastable FCC to BCC and successfully increased strain hardening ability. The strain hardening ability was even higher at 77 K due to decreasing FCC phase stability at lower temperatures. The increased strain hardening ability led to an excellent balance of strength and ductility, with ultimate tensile strength/uniform elongation of similar to 1.5 GPa/similar to 15% at 298 K and similar to 2.3 GPa/similar to 11% at 77 K. (C) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.relation.isPartOfSCRIPTA MATERIALIA-
dc.title2.3 GPa cryogenic strength through thermal-induced and deformation-induced body-centered cubic martensite in a novel ferrous medium entropy alloy-
dc.typeArticle-
dc.identifier.doi10.1016/j.scriptamat.2021.114157-
dc.type.rimsART-
dc.identifier.bibliographicCitationSCRIPTA MATERIALIA, v.204-
dc.identifier.wosid000690441400011-
dc.citation.titleSCRIPTA MATERIALIA-
dc.citation.volume204-
dc.contributor.affiliatedAuthorKwon, Hyeonseok-
dc.contributor.affiliatedAuthorSathiyamoorthi, Praveen-
dc.contributor.affiliatedAuthorKarthik, Gangaraju Manogna-
dc.contributor.affiliatedAuthorAsghari-Rad, Peyman-
dc.contributor.affiliatedAuthorZargaran, Alireza-
dc.contributor.affiliatedAuthorDo, Hyeon-Seok-
dc.contributor.affiliatedAuthorLee, Byeong-Joo-
dc.contributor.affiliatedAuthorKim, Hyoung Seop-
dc.identifier.scopusid2-s2.0-85111173537-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusPHASE-TRANSFORMATION-
dc.subject.keywordPlusLATH MARTENSITE-
dc.subject.keywordPlusMECHANISMS-
dc.subject.keywordPlusSTEEL-
dc.subject.keywordPlusBLOCK-
dc.subject.keywordAuthorDislocation structure-
dc.subject.keywordAuthorPlastic deformation-
dc.subject.keywordAuthorWork hardening-
dc.subject.keywordAuthorMartensitic phase transformation-
dc.subject.keywordAuthorMaraging medium-entropy alloys-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김형섭KIM, HYOUNG SEOP
Ferrous & Eco Materials Technology
Read more

Views & Downloads

Browse