Open Access System for Information Sharing

Login Library

 

Article
Cited 78 time in webofscience Cited 81 time in scopus
Metadata Downloads

Molecular basis for unidirectional scaffold switching of human Plk4 in centriole biogenesis SCIE SCOPUS

Title
Molecular basis for unidirectional scaffold switching of human Plk4 in centriole biogenesis
Authors
PARK, SUK YOULPark, JEKim, TSKim, JHKwak, MJKu, BTian, LMurugan, RNAhn, MKomiya, SHojo, HKim, NHKim, BYBang, JKErikson, RLLee, KWKim, SJOh, BHYang, WLee, KS
Date Issued
2014-08
Publisher
Nature Publishing Group
Abstract
Polo-like kinase 4 (Plk4) is a key regulator of centriole duplication, an event critical for the maintenance of genomic integrity. We show that Plk4 relocalizes from the inner Cep192 ring to the outer Cep152 ring as newly recruited Cep152 assembles around the Cep192-encircled daughter centriole. Crystal-structure analyses revealed that Cep192- and Cep152-derived peptides bind the cryptic polo box (CPB) of Plk4 in opposite orientations and in a mutually exclusive manner. The Cep152 peptide bound to the CPB markedly better than did the Cep192 peptide and effectively 'snatched' the CPB away from a preformed CPB Cep192 peptide complex. A cancer-associated Cep152 mutation impairing the Plk4 interaction induced defects in procentriole assembly and chromosome segregation. Thus, Plk4 is intricately regulated in time and space through ordered interactions with two distinct scaffolds, Cep192 and Cep152, and a failure in this process may lead to human cancer.
URI
https://oasis.postech.ac.kr/handle/2014.oak/109141
DOI
10.1038/nsmb.2846
ISSN
1545-9993
Article Type
Article
Citation
Nature Structural and Molecular Biology, vol. 21, no. 8, page. 696 - 703, 2014-08
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse