Open Access System for Information Sharing

Login Library

 

Article
Cited 5 time in webofscience Cited 8 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorPark, Junshin-
dc.contributor.authorHa, Sanghyun-
dc.contributor.authorYou, Donghyun-
dc.date.accessioned2022-02-14T05:40:27Z-
dc.date.available2022-02-14T05:40:27Z-
dc.date.created2021-08-05-
dc.date.issued2021-06-
dc.identifier.issn1070-6631-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/109326-
dc.description.abstractPredictive capabilities of unsteady Reynolds-averaged Navier-Stokes (URANS) techniques using the k - omega shear stress transport and Spalart-Allmaras models are assessed for the simulation of turbulent boundary layers under unsteady adverse pressure gradients by comparing their results with direct numerical simulation (DNS) results. Simulations are conducted for separating and reattaching turbulent boundary layers under periodic adverse pressure gradients. Phase-wise comparisons of the velocity, the Reynolds stress, and the skin friction coefficient obtained by URANS simulations and DNS are carried out. URANS techniques are found to qualitatively well predict the formation of the separation bubble and the phase response of the shear layer height, while they predict earlier separation and a larger recirculation bubble compared with those in DNS. Phase responses of the skin friction predicted by URANS simulations are found not to be an accurate indication of flow separation and reattachment of the turbulent boundary layer. The main causes of discrepancies among DNS and URANS results in the near-wall region are attributed to the different anisotropy of the Reynolds stress, which can be characterized by a barycentric map.-
dc.languageEnglish-
dc.publisherAmerican Institute of Physics-
dc.relation.isPartOfPhysics of Fluids-
dc.titleOn the unsteady Reynolds-averaged Navier-Stokes capability of simulating turbulent boundary layers under unsteady adverse pressure gradients-
dc.typeArticle-
dc.identifier.doi10.1063/5.0049509-
dc.type.rimsART-
dc.identifier.bibliographicCitationPhysics of Fluids, v.33, no.6-
dc.identifier.wosid000677518800004-
dc.citation.number6-
dc.citation.titlePhysics of Fluids-
dc.citation.volume33-
dc.contributor.affiliatedAuthorPark, Junshin-
dc.contributor.affiliatedAuthorHa, Sanghyun-
dc.contributor.affiliatedAuthorYou, Donghyun-
dc.identifier.scopusid2-s2.0-85108343030-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusMODELS-
dc.subject.keywordPlusTRENDS-
dc.subject.keywordPlusFRACTIONAL-STEP METHOD-
dc.subject.keywordPlusSEPARATION-BUBBLES-
dc.subject.keywordPlusPITCHING AIRFOIL-
dc.subject.keywordPlusDYNAMIC STALL-
dc.subject.keywordPlusONE-EQUATION-
dc.subject.keywordPlusFLOWS-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.relation.journalWebOfScienceCategoryPhysics, Fluids & Plasmas-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

유동현YOU, DONGHYUN
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse