Open Access System for Information Sharing

Login Library

 

Article
Cited 354 time in webofscience Cited 400 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorLEE, HYUNG JOO-
dc.contributor.authorLiu, Yang-
dc.contributor.authorCoull, Brent A.-
dc.contributor.authorSchwartz, Joel-
dc.contributor.authorKoutrakis, Petros-
dc.date.accessioned2022-02-15T03:00:13Z-
dc.date.available2022-02-15T03:00:13Z-
dc.date.created2022-02-14-
dc.date.issued2011-08-
dc.identifier.issn1680-7316-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/109335-
dc.description.abstractEpidemiological studies investigating the human health effects of PM2.5 are susceptible to exposure measurement errors, a form of bias in exposure estimates, since they rely on data from a limited number of PM2.5 monitors within their study area. Satellite data can be used to expand spatial coverage, potentially enhancing our ability to estimate location-or subject-specific exposures to PM2.5, but some have reported poor predictive power. A new methodology was developed to calibrate aerosol optical depth (AOD) data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS). Subsequently, this method was used to predict ground daily PM2.5 concentrations in the New England region. 2003 MODIS AOD data corresponding to the New England region were retrieved, and PM2.5 concentrations measured at 26 US Environmental Protection Agency (EPA) PM2.5 monitoring sites were used to calibrate the AOD data. A mixed effects model which allows day-today variability in daily PM(2.)5-AOD relationships was used to predict location-specific PM2.5 levels. PM2.5 concentrations measured at the monitoring sites were compared to those predicted for the corresponding grid cells. Both cross-sectional and longitudinal comparisons between the observed and predicted concentrations suggested that the proposed new calibration approach renders MODIS AOD data a potentially useful predictor of PM2.5 concentrations. Furthermore, the estimated PM2.5 levels within the study domain were examined in relation to air pollution sources. Our approach made it possible to investigate the spatial patterns of PM2.5 concentrations within the study domain.-
dc.languageEnglish-
dc.publisherEuropean Geophysical Society-
dc.relation.isPartOfAtmospheric Chemistry and Physics-
dc.titleA novel calibration approach of MODIS AOD data to predict PM2.5 concentrations-
dc.typeArticle-
dc.identifier.doi10.5194/acp-11-7991-2011-
dc.type.rimsART-
dc.identifier.bibliographicCitationAtmospheric Chemistry and Physics, v.11, no.15, pp.7991 - 8002-
dc.identifier.wosid000293826500035-
dc.citation.endPage8002-
dc.citation.number15-
dc.citation.startPage7991-
dc.citation.titleAtmospheric Chemistry and Physics-
dc.citation.volume11-
dc.contributor.affiliatedAuthorLEE, HYUNG JOO-
dc.identifier.scopusid2-s2.0-80051616051-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusTHICKNESS-
dc.subject.keywordPlusPOLLUTION-
dc.subject.keywordPlusNETWORK-
dc.subject.keywordPlusAEROSOL OPTICAL DEPTH-
dc.subject.keywordPlusMATTER COMPONENT CONCENTRATIONS-
dc.subject.keywordPlusAIR-QUALITY ASSESSMENT-
dc.subject.keywordPlusGROUND-LEVEL PM2.5-
dc.subject.keywordPlusPARTICULATE MATTER-
dc.subject.keywordPlusUNITED-STATES-
dc.subject.keywordPlusBIRTH-WEIGHT-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.relation.journalWebOfScienceCategoryMeteorology & Atmospheric Sciences-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이형주LEE, HYUNG JOO
Div of Environmental Science & Enginrg
Read more

Views & Downloads

Browse