Open Access System for Information Sharing

Login Library

 

Article
Cited 8 time in webofscience Cited 8 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorKim, W.-
dc.contributor.authorKwon, J.-
dc.contributor.authorTakeda, Y.-
dc.contributor.authorSekine, T.-
dc.contributor.authorTokito, S.-
dc.contributor.authorJung, S.-
dc.date.accessioned2022-02-22T02:50:10Z-
dc.date.available2022-02-22T02:50:10Z-
dc.date.created2021-11-28-
dc.date.issued2021-07-
dc.identifier.issn2365-709X-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/109436-
dc.description.abstractIn this study, printed organic nonvolatile memory thin-film transistors (TFTs) with phase-separated tunneling layer is presented. Finely patterned electrodes are fabricated by reverse-offset printing with 15 mu m line width and 10 mu m channel length. Memory devices are configured in a bottom-gate bottom-contact TFT structure with a high-k gate blocking insulator poly(vinylidene fluoride-co-trifluoroethylene). A blended ink, which consisted of a small-molecule p-type organic semiconductor dithieno[2,3-d;2 &apos;,3 &apos;-d &apos;]benzo[1,2-b;4,5-b &apos;]dithiophene and a polystyrene dielectric, is fabricated using air-pulse nozzle printing. The tunneling layer is formed during the active layer printing process with the blended ink by phase separation of small-molecule and polymer. The printed memory TFTs with the phase-separated tunneling layer exhibit significantly improved V-TH shifts (approximate to 3 times), programmed/erased current ratio (>10(3) A A(-1)), switching speed (<100 ms), and estimated data retention (>10 years). This memory device can be applied to wearable electronics, smart Internet-of-Things devices, and neuromorphic computing devices.-
dc.languageEnglish-
dc.publisherJOHN WILEY & SONS INC-
dc.relation.isPartOfAdvanced Materials Technologies-
dc.titleFlexible and Printed Organic Nonvolatile Memory Transistor with Bilayer Polymer Dielectrics-
dc.typeArticle-
dc.identifier.doi10.1002/admt.202100141-
dc.type.rimsART-
dc.identifier.bibliographicCitationAdvanced Materials Technologies, v.6, no.7-
dc.identifier.wosid000650225900001-
dc.citation.number7-
dc.citation.titleAdvanced Materials Technologies-
dc.citation.volume6-
dc.contributor.affiliatedAuthorKim, W.-
dc.contributor.affiliatedAuthorJung, S.-
dc.identifier.scopusid2-s2.0-85105754700-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusSeparation of small molecules-
dc.subject.keywordPlusThin-film transistor (TFTs)-
dc.subject.keywordPlusVinylidene fluoride-
dc.subject.keywordPlusThin film transistors-
dc.subject.keywordPlusDielectric materials-
dc.subject.keywordPlusFluorine compounds-
dc.subject.keywordPlusHigh-k dielectric-
dc.subject.keywordPlusMolecules-
dc.subject.keywordPlusNonvolatile storage-
dc.subject.keywordPlusPhase separation-
dc.subject.keywordPlusNeuromorphic computing-
dc.subject.keywordPlusOrganic nonvolatile memory-
dc.subject.keywordPlusp-Type organic semiconductors-
dc.subject.keywordPlusPatterned electrode-
dc.subject.keywordPlusReverse offset printings-
dc.subject.keywordAuthorcharge trapping-
dc.subject.keywordAuthornonvolatile memory transistor-
dc.subject.keywordAuthorpolymeric electret-
dc.subject.keywordAuthorprinted electronics-
dc.subject.keywordAuthorreverse offset printing-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse