Open Access System for Information Sharing

Login Library

 

Article
Cited 2 time in webofscience Cited 2 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorSong, Gyujin-
dc.contributor.authorLee, June Ho-
dc.contributor.authorLee, Sangyeop-
dc.contributor.authorHan, Dong-Yeob-
dc.contributor.authorChoi, Sungho-
dc.contributor.authorKwak, Myung-Jun-
dc.contributor.authorJang, Ji-Hyun-
dc.contributor.authorLee, Donghwa-
dc.contributor.authorPark, Soojin-
dc.date.accessioned2022-02-25T05:50:03Z-
dc.date.available2022-02-25T05:50:03Z-
dc.date.created2022-02-24-
dc.date.issued2022-01-12-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/109521-
dc.description.abstractThe ability to realize a highly capacitive/conductive electrode is an essential factor in large-scale devices, requiring a high-power/energy density system. Germanium is a feasible candidate as an anode material of lithium-ion batteries to meet the demands. However, the application is constrained due to low charge conductivity and large volume change on cycles. Here, we design a hybrid conductive shell of multi-component titanium oxide on a germanium microstructure. The shell enables facile hybrid ionic/electronic conductivity for swift charge mobility in the germanium anode, revealed through computational calculation and consecutive measurement of electrochemical impedance spectroscopy. Furthermore, a well-constructed electrode features a high initial Coulombic efficiency (90.6%) and stable cycle life for 800 cycles (capacity retention of 90.4% for a fast-charging system. The stress-resilient properties of dense microparticle facilitate to alleviate structural failure toward high volumetric (up to 1737 W h L-1) and power density (767 W h L-1 at 7280 W L-1) of full cells, paired with highly loaded NCM811 in practical application.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.relation.isPartOfACS Applied Materials and Interfaces-
dc.titleHighly Stable Germanium Microparticle Anodes with a Hybrid Conductive Shell for High Volumetric and Fast Lithium Storage-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.1c18607-
dc.type.rimsART-
dc.identifier.bibliographicCitationACS Applied Materials and Interfaces, v.14, no.1, pp.750 - 760-
dc.identifier.wosid000736578100001-
dc.citation.endPage760-
dc.citation.number1-
dc.citation.startPage750-
dc.citation.titleACS Applied Materials and Interfaces-
dc.citation.volume14-
dc.contributor.affiliatedAuthorSong, Gyujin-
dc.contributor.affiliatedAuthorLee, June Ho-
dc.contributor.affiliatedAuthorLee, Sangyeop-
dc.contributor.affiliatedAuthorHan, Dong-Yeob-
dc.contributor.affiliatedAuthorChoi, Sungho-
dc.contributor.affiliatedAuthorLee, Donghwa-
dc.contributor.affiliatedAuthorPark, Soojin-
dc.identifier.scopusid2-s2.0-85122581214-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusION BATTERIES-
dc.subject.keywordPlusMETALLOTHERMIC REDUCTION-
dc.subject.keywordPlusENERGY-STORAGE-
dc.subject.keywordPlusCAPACITY-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusGRAPHITE-
dc.subject.keywordPlusSTRAIN-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusPOWER-
dc.subject.keywordAuthorcore-shell structure-
dc.subject.keywordAuthorfast charging-
dc.subject.keywordAuthorgermanium microparticle-
dc.subject.keywordAuthorhybrid conductivity-
dc.subject.keywordAuthorsequential reduction reaction-
dc.subject.keywordAuthorvolumetric energy density-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이동화LEE, DONGHWA
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse