Open Access System for Information Sharing

Login Library

 

Article
Cited 9 time in webofscience Cited 11 time in scopus
Metadata Downloads

Polarimetric Spatio-Temporal Light Transport Probing SCIE SCOPUS

Title
Polarimetric Spatio-Temporal Light Transport Probing
Authors
Baek, Seung-HwanHeide, Felix
Date Issued
2021-12
Publisher
Association for Computing Machinary, Inc.
Abstract
Light emitted from a source into a scene can undergo complex interactions with multiple scene surfaces of different material types before being reflected towards a detector. During this transport, every surface reflection and propagation is encoded in the properties of the photons that ultimately reach the detector, including travel time, direction, intensity, wavelength and polarization. Conventional imaging systems capture intensity by integrating over all other dimensions of the incident light into a single quantity, hiding this rich scene information in these aggregate measurements. Existing methods are capable of untangling these measurements into their spatial and temporal dimensions, fueling geometric scene understanding tasks. However, examining polarimetric material properties jointly with geometric properties is an open challenge that could enable unprecedented capabilities beyond geometric scene understanding, allowing for material-dependent scene understanding and imaging through complex transport, such as macroscopic scattering. In this work, we close this gap, and propose a computational light transport imaging method that captures the spatially- and temporally-resolved complete polarimetric response of a scene, which encodes rich material properties. Our method hinges on a novel 7D tensor theory of light transport. We discover low-rank structure in the polarimetric tensor dimension and propose a data-driven rotating ellipsometry method that learns to exploit redundancy of polarimetric structure. We instantiate our theory with two imaging prototypes: spatio-polarimetric imaging and coaxial temporal-polarimetric imaging. This allows us, for the first time, to decompose scene light transport into temporal, spatial, and complete polarimetric dimensions that unveil scene properties hidden to conventional methods. We validate the applicability of our method on diverse tasks, including shape reconstruction with subsurface scattering, seeing through scattering media, untangling multi-bounce light transport, breaking metamerism with polarization, and spatio-polarimetric decomposition of crystals.
URI
https://oasis.postech.ac.kr/handle/2014.oak/109522
DOI
10.1145/3478513.3480517
ISSN
0730-0301
Article Type
Article
Citation
ACM Transactions on Graphics, vol. 40, no. 6, 2021-12
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse