Open Access System for Information Sharing

Login Library

 

Conference
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Pairwise Relational Networks for Face Recognition

Title
Pairwise Relational Networks for Face Recognition
Authors
BONG, NAM KANGKIM, YONG HYUNKIM, DAI JIN
Date Issued
2018-09-08
Publisher
Springer Verlag
Abstract
Existing face recognition using deep neural networks is difficult to know what kind of features are used to discriminate the identities of face images clearly. To investigate the effective features for face recognition, we propose a novel face recognition method, called a pairwise relational network (PRN), that obtains local appearance patches around landmark points on the feature map, and captures the pairwise relation between a pair of local appearance patches. The PRN is trained to capture unique and discriminative pairwise relations among different identities. Because the existence and meaning of pairwise relations should be identity dependent, we add a face identity state feature, which obtains from the long short-term memory (LSTM) units network with the sequential local appearance patches on the feature maps, to the PRN. To further improve accuracy of face recognition, we combined the global appearance representation with the pairwise relational feature. Experimental results on the LFW show that the PRN using only pairwise relations achieved 99.65% accuracy and the PRN using both pairwise relations and face identity state feature achieved 99.76% accuracy. On the YTF, both the PRN using only pairwise relations and the PRN using pairwise relations and the face identity state feature achieved the state-of-the-art (95.7% and 96.3%). The PRN also achieved comparable results to the state-of-the-art for both face verification and face identification tasks on the IJB-A, and the state-of-the-art on the IJB-B.
URI
https://oasis.postech.ac.kr/handle/2014.oak/109833
Article Type
Conference
Citation
15th European Conference on Computer Vision, ECCV 2018, page. 646 - 663, 2018-09-08
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김대진KIM, DAI JIN
Dept of Computer Science & Enginrg
Read more

Views & Downloads

Browse