Open Access System for Information Sharing

Login Library

 

Article
Cited 81 time in webofscience Cited 81 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorKim, H.-
dc.contributor.authorKang, B.-
dc.contributor.authorCui, X.-
dc.contributor.authorLee, S.-H.-
dc.contributor.authorLee, K.-
dc.contributor.authorCho, D.-W.-
dc.contributor.authorHwang, W.-
dc.contributor.authorWoodfield, T.B.F.-
dc.contributor.authorLim, K.S.-
dc.contributor.authorJang, J.-
dc.date.accessioned2022-03-02T23:40:34Z-
dc.date.available2022-03-02T23:40:34Z-
dc.date.created2021-12-12-
dc.date.issued2021-08-
dc.identifier.issn1616-301X-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/110100-
dc.description.abstractTissue engineering requires not only tissue-specific functionality but also a realistic scale. Decellularized extracellular matrix (dECM) is presently applied to the extrusion-based 3D printing technology. It has demonstrated excellent efficiency as bioscaffolds that allow engineering of living constructs with elaborate microarchitectures as well as the tissue-specific biochemical milieu of target tissues and organs. However, dECM bioinks have poor printability and physical properties, resulting in limited shape fidelity and scalability. In this study, new light-activated dECM bioinks with ruthenium/sodium persulfate (dERS) are introduced. The materials can be polymerized via a dityrosine-based cross-linking system with rapid reaction kinetics and improved mechanical properties. Complicated constructs with high aspect ratios can be fabricated similar to the geometry of the desired constructs with increased shape fidelity and excellent printing versatility using dERS. Furthermore, living tissue constructs can be safely fabricated with excellent tissue regenerative capacity identical to that of pure dECM. dERS may serve as a platform for a wider biofabrication window through building complex and centimeter-scale living constructs as well as supporting tissue-specific performances to encapsulated cells. This capability of dERS opens new avenues for upscaling the production of hydrogel-based constructs without additional materials and processes, applicable in tissue engineering and regenerative medicine. ? 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH-
dc.languageEnglish-
dc.publisherJohn Wiley & Sons Ltd.-
dc.relation.isPartOfAdvanced Functional Materials-
dc.titleLight-Activated Decellularized Extracellular Matrix-Based Bioinks for Volumetric Tissue Analogs at the Centimeter Scale-
dc.typeArticle-
dc.identifier.doi10.1002/adfm.202011252-
dc.type.rimsART-
dc.identifier.bibliographicCitationAdvanced Functional Materials, v.31, no.32-
dc.identifier.wosid000649975800001-
dc.citation.number32-
dc.citation.titleAdvanced Functional Materials-
dc.citation.volume31-
dc.contributor.affiliatedAuthorKim, H.-
dc.contributor.affiliatedAuthorKang, B.-
dc.contributor.affiliatedAuthorLee, S.-H.-
dc.contributor.affiliatedAuthorLee, K.-
dc.contributor.affiliatedAuthorCho, D.-W.-
dc.contributor.affiliatedAuthorHwang, W.-
dc.contributor.affiliatedAuthorJang, J.-
dc.identifier.scopusid2-s2.0-85105746857-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.type.docTypeArticle-
dc.subject.keywordPlus3D printers-
dc.subject.keywordPlusAspect ratio-
dc.subject.keywordPlusBiomechanics-
dc.subject.keywordPlusCrosslinking-
dc.subject.keywordPlusReaction kinetics-
dc.subject.keywordPlusRuthenium compounds-
dc.subject.keywordPlusTissue engineering-
dc.subject.keywordPlusBuilding complexes-
dc.subject.keywordPlusEncapsulated cell-
dc.subject.keywordPlusExtracellular matrices-
dc.subject.keywordPlusHigh aspect ratio-
dc.subject.keywordPlusMaterials and process-
dc.subject.keywordPlusMicro architectures-
dc.subject.keywordPlusRegenerative capacity-
dc.subject.keywordPlusTissue specifics-
dc.subject.keywordPlusTissue-
dc.subject.keywordAuthortissue engineering-
dc.subject.keywordAuthor3D bioprinting technology-
dc.subject.keywordAuthordecellularized extracellular matrix-
dc.subject.keywordAuthorhydrogel-
dc.subject.keywordAuthorphotopolymerization-
dc.subject.keywordAuthorscalable tissue manufacturing-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

장진아JANG, JIN AH
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse