Open Access System for Information Sharing

Login Library

 

Article
Cited 8 time in webofscience Cited 9 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorLee, SJ-
dc.contributor.authorPark, HW-
dc.contributor.authorJung, SY-
dc.date.accessioned2015-06-25T02:29:02Z-
dc.date.available2015-06-25T02:29:02Z-
dc.date.created2015-02-05-
dc.date.issued2014-09-
dc.identifier.issn0909-0495-
dc.identifier.other2015-OAK-0000031771en_US
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/11047-
dc.description.abstractX-ray imaging techniques have been employed to visualize various biofluid flow phenomena in a non-destructive manner. X-ray particle image velocimetry (PIV) was developed to measure velocity fields of blood flows to obtain hemodynamic information. A time-resolved X-ray PIV technique that is capable of measuring the velocity fields of blood flows under real physiological conditions was recently developed. However, technical limitations still remained in the measurement of blood flows with high image contrast and sufficient biocapability. In this study, CO2 microbubbles as flow-tracing contrast media for X-ray PIV measurements of biofluid flows was developed. Human serum albumin and CO2 gas were mechanically agitated to fabricate CO2 microbubbles. The optimal fabricating conditions of CO2 microbubbles were found by comparing the size and amount of microbubbles fabricated under various operating conditions. The average size and quantity of CO2 microbubbles were measured by using a synchrotron X-ray imaging technique with a high spatial resolution. The quantity and size of the fabricated microbubbles decrease with increasing speed and operation time of the mechanical agitation. The feasibility of CO2 microbubbles as a flow-tracing contrast media was checked for a 40% hematocrit blood flow. Particle images of the blood flow were consecutively captured by the time-resolved X-ray PIV system to obtain velocity field information of the flow. The experimental results were compared with a theoretically amassed velocity profile. Results show that the CO2 microbubbles can be used as effective flow-tracing contrast media in X-ray PIV experiments.-
dc.description.statementofresponsibilityopenen_US
dc.languageEnglish-
dc.publisherWILEY-BLACKWELL-
dc.relation.isPartOfJOURNAL OF SYNCHROTRON RADIATION-
dc.rightsBY_NC_NDen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.0/kren_US
dc.subjectCO2 microbubbles-
dc.subjectflow-tracing contrast media-
dc.subjectbiofluid flow-
dc.subjectX-ray imaging-
dc.subjectparticle image velocimetry-
dc.subjectPHASE-CONTRAST-
dc.subjectCARBON-DIOXIDE-
dc.subjectVELOCITY PROFILES-
dc.subjectAIR-EMBOLISM-
dc.subjectVELOCIMETRY-
dc.subjectANGIOGRAPHY-
dc.subjectECHOCARDIOGRAPHY-
dc.subjectENHANCEMENT-
dc.subjectARTERY-
dc.subjectGAS-
dc.titleUsage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows-
dc.typeArticle-
dc.contributor.college기계공학과en_US
dc.identifier.doi10.1107/S1600577514013423-
dc.author.googleLee, SJen_US
dc.author.googlePark, HWen_US
dc.author.googleJung, SYen_US
dc.relation.volume21en_US
dc.relation.startpage1160en_US
dc.relation.lastpage1166en_US
dc.contributor.id10054593en_US
dc.relation.journalJOURNAL OF SYNCHROTRON RADIATIONen_US
dc.relation.indexSCI급, SCOPUS 등재논문en_US
dc.relation.sciSCIen_US
dc.collections.nameJournal Papersen_US
dc.type.rimsART-
dc.identifier.bibliographicCitationJOURNAL OF SYNCHROTRON RADIATION, v.21, pp.1160 - 1166-
dc.identifier.wosid000341687000033-
dc.date.tcdate2019-01-01-
dc.citation.endPage1166-
dc.citation.startPage1160-
dc.citation.titleJOURNAL OF SYNCHROTRON RADIATION-
dc.citation.volume21-
dc.contributor.affiliatedAuthorLee, SJ-
dc.identifier.scopusid2-s2.0-84924656477-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc7-
dc.description.scptc7*
dc.date.scptcdate2018-10-274*
dc.type.docTypeArticle-
dc.subject.keywordPlusPHASE-CONTRAST-
dc.subject.keywordPlusCARBON-DIOXIDE-
dc.subject.keywordPlusAIR-EMBOLISM-
dc.subject.keywordPlusVELOCIMETRY-
dc.subject.keywordPlusVELOCITY-
dc.subject.keywordPlusENHANCEMENT-
dc.subject.keywordPlusANGIOGRAPHY-
dc.subject.keywordAuthorCO2 microbubbles-
dc.subject.keywordAuthorflow-tracing contrast media-
dc.subject.keywordAuthorbiofluid flow-
dc.subject.keywordAuthorX-ray imaging-
dc.subject.keywordAuthorparticle image velocimetry-
dc.relation.journalWebOfScienceCategoryInstruments & Instrumentation-
dc.relation.journalWebOfScienceCategoryOptics-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaInstruments & Instrumentation-
dc.relation.journalResearchAreaOptics-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이상준LEE, SANG JOON
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse