Open Access System for Information Sharing

Login Library

 

Article
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Pixelated Microsized Quantum Dot Arrays Using Surface-Tension-Induced Flow SCIE SCOPUS

Title
Pixelated Microsized Quantum Dot Arrays Using Surface-Tension-Induced Flow
Authors
HAN, TAEYANGNOH, JAEBUMKIM, MOO HWANRHO, JUNSUKJO, HANG JIN
Date Issued
2021-11
Publisher
American Chemical Society
Abstract
Quantum dots (QDs) are semiconducting nanoparticles that exhibit unique fluorescent characteristics when excited by an ultraviolet light source. Owing to their highly saturated emissions, display panels using QDs as pixels have been presented. However, the complications of the nanofabrication procedure limit the industrial application of QDs. This study suggests a method to arrange high-aspect-ratio QD pixels by inducing both Laplace-pressure-driven capillary flow and thermally driven Marangoni flow. The evaporation of colloidal QDs induces a capillary flow that drives the QDs toward the inner tips of V-shaped structures. Additionally, the Marangoni flow arranges the gathered QDs at the tip; thus, they could form a high dune, overcoming the limitations of the existing capillary assembly method using evaporation. Using these phenomena, clover-shaped (assembly of V-shaped edges) templates were made to gather numerous QDs, and the clover with a 30 degrees angle afforded the highest brightness among all the angle structures. Finally, by demonstrating a 100-cm(2)-sized QD microarray with high uniformity (98.6%), our method shows the feasibility of large-area fabrication, which has extensive application in manufacturing QD displays, anti-counterfeiting labels, and other QD-based optical devices.
URI
https://oasis.postech.ac.kr/handle/2014.oak/110797
DOI
10.1021/acsami.1c14857
ISSN
1944-8244
Article Type
Article
Citation
ACS Applied Materials and Interfaces, vol. 13, no. 43, page. 51718 - 51725, 2021-11
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse