Open Access System for Information Sharing

Login Library

 

Thesis
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Fabrication of Pressure-sensitive Organic Layers and Their Application in Mechano-electric Sensors and E-Skin

Title
Fabrication of Pressure-sensitive Organic Layers and Their Application in Mechano-electric Sensors and E-Skin
Authors
권오영
Date Issued
2019
Publisher
포항공과대학교
Abstract
소프트 일렉트로닉스는 유연/신축성을 지닌 고분자를 주 재료로 현재 전자피부, 센서 등 다양한 응용분야에서 관심을 받고 있다. 특히, 소프트한 압력센서는 인체의 가장 넓은 신체 기관인 피부의 mechanoreceptor를 모사하여 구현하기 위해 활발히 연구가 진행 중이다. 본 연구는 피부의 진피 또는 표피에 분포되어 있는 mechanoreceptor의 역할과 수행능력을 기반으로 하여, 이를 소프트 전자소자로 구현하였으며, 물리-전기적 거동에 대해 고찰하였다. 소개부분에서 인체의 피부 및 기본적인 압력센서의 개념과 원리에 대해 대해 간단히 소개를 하였다. 또한 피부의 기관을 모사하여 센서로 구현하기 위해 선행되어야 할 사항이나 현재 연구분야에서 어려움을 겪고 있는 부분에 대해 살펴보았다. 본 연구에서는 현재의 유기 압력센서 부분에 대하여, 외부자극에 대한 감도, 기술호환성, 구부림 특성을 향상시키는 방향으로 연구를 하였다. 본론에서는 SA-1 타입 및 SA-2 타입의 mechanoreceptor의 역할을 수행할 수 있는 저항식 센서와 커패시티브 센서의 재료, 제조방법, 디자인 원리, 물리-전기적 거동에 대한 실험적 분석과 토의를 하였다. 피부에 친화적인 재료를 통해 반응감도가 뛰어난 센서를 구현하면서, 어레이화 시키기 용이한 기술을 적용하여, 대면적 센서 및 IoT향 센서로의 적용가능성을 제시하였다. 본 연구의 결과는 차세대 웨어러블 디바이스의 구현을 위한 핵심 기술이 될 것으로 기대되며, 외부 자극뿐 아니라 인체의 건강 신호를 감지는 헬스케어용 디바이스로 활용이 기대된다.
The human sense of touch deals with the spatiotemporal perception of external stimuli through a large number of receptors (e.g., mechanoreceptors for pressure/vibration, thermoreceptors for "warm" and "cold" temperature, and nocioceptors for pain/damage) that are distributed all over the body with variable density. This thesis presents the design, fabrication and testing of a novel polymeric pressure sensor capable of detecting the static stress distribution and other external stimuli such as pressure, touch, temperature. The design of the pressure sensors was inspired by human skin. The sequence of events that lead to pressure sensing is as follows: when the skin comes into physical contact with an object, the epidermis and dermis undergo deformations (they are subject to a strain field). This deformation of the matrix leads to the distortion of the embedded mechanoreceptors. These distortions trigger specific responses from the mechanoreceptors which transmits the sensory information to the central nervous system via afferents nerve fibers in the arm. Tactile perception takes place when the brain decodes this sensory information. To gain a fundamental understanding of the origins and mechanisms of human sense, I must study the role of each component in relation to the tactile system. Quantitative understanding of how spatiotemporal loads on the skin surface are transmitted to the mechanical receptor sites in the skin to fully understand the role of biomechanics in the skin. One way to fully study the haptic system is to observe how the mechanical receptor responds to various external stimuli of the skin. In the first chapter, I briefly introduce human tactile system including skin mechanics of tactile sensing and their spatiotemporal sensitivities. Next, I explain the reason why different types of pressure sensors are needed to evaluate the electronic-skin (E-Skin), and briefly explain the principle for each pressure sensor. In the second chapter, I present the design principles of mechanoreceptor-inspired pressure sensor. Compressive behavior of both materials is studied. In the next chapters, conductive core/shell polymer nanofibers and ionogel are fabricated, and the resulting pressure sensitive layer are used to create piezoresistive-type pressure sensors and multimodal sensor is capable of monitoring the locations of touch points and temperature stimuli simultaneously, respectively. It also describes the mechanoelectrical properties of single pressure-sensitive layer in the application of flexible sensor. Finally, I summarize the work done citing contributions along with areas of future work and a discussion of the application of the humanoid pressure sensor. The developed method opens a new route to the mass production of polymer-based pressure sensors with high mechanical durability, which creates additional possibilities for the development of human-machine interfaces.
URI
http://postech.dcollection.net/common/orgView/200000176393
https://oasis.postech.ac.kr/handle/2014.oak/111042
Article Type
Thesis
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse