Open Access System for Information Sharing

Login Library

 

Thesis
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

NbO2-based Insulator-Metal-Transition Devices for High Density Memory and Steep-Slope Transistor Applications

Title
NbO2-based Insulator-Metal-Transition Devices for High Density Memory and Steep-Slope Transistor Applications
Authors
박재혁
Date Issued
2020
Publisher
포항공과대학교
Abstract
There is an unceasing attempt to down scale charge based devices in memory and logic technologies such as dynamic random access memory (DRAM), NAND, and metal-oxide-semiconductor field-effect transistor (MOSFET) for higher density and higher performance. As a result, the semiconductor industry such as personal computers (PCs) and smartphone has experienced rapid growth in the last few years. However, physical scaling limits and high leakage current (junction, gate dielectric and subthreshold) restrains conventional electron-based memory and logic devices from satisfying the requirements for ultra-low-power and high-density capacities. Therefore, the threshold switching (TS) devices have been focused to overcome the limitations of conventional memory and logic devices. Among various TS devices, the NbO2 insulator-metal transition (IMT) TS device, which has superior characteristics such as the ultra-fast operating speed with superior thermal stability, was mainly studied in this dissertation. First, the mechanism of the NbO2 IMT device was analyzed and unveiled by numerical analysis with the experimental result. Based on nucleation theory derived from basic thermodynamics, the mechanism of the NbO2 IMT device was clearly understood. Moreover, origin of leakage current in the NbO2 film was revealed by current-induced atomic force microscopy (C-AFM) analysis. To prevent leakage current of the NbO2 film, the structural engineering on the NbO2 IMT device was conducted by inserting a barrier layer between electrode and electrolyte. As a result, the leakage current of the NbO2 IMT device was successfully reduced over 1-2 orders without losing any other unique characteristics such as fast operating speed and drift-free characteristics. Moreover, the performance of the TS device was maximized by introducing a hybrid device that combines Ag-based TS device with an ovonic threshold switching (OTS) device or NbO2 IMT device. At last, the feasibility of cross-point memory applications was demonstrated by combining suggested various NbO2 TS devices with resistive random access memory (RRAM). Moreover, the suggested TS devices were implemented with MOSFET to show feasibility as a logic device. The suggested MOSFET with TS has superior SS (<5mV/dec), which can overcome the limitations of conventional MOSFET based logic device technology.
최근 메모리 및 로직 반도체 기술은 미세화 공정의 물리적 한계와 미세화로 인해 발생하는 누설전류로 인해 전계 및 전자기반의 메모리 및 로직 소자는 더 이상 제 4차 산업에서 요구되는 저전력 및 높은 집적도를 구현하기 어려운 상황에 다다르게 되었다. 따라서, 본 박사학위 논문에서는 메모리 및 로직 분야에서 기존에 가지는 한계를 모두 극복할 수 있게 할 수 있는 TS 소자에 대한 연구를 진행하였으며, 특히 그 중에서 NbO2 기반의 IMT (Insulator-Metal-Transition) 소자에 대한 연구를 주로 진행하였다. 연구의 서두에는, 열역학적 이론을 이용한 전계 하 핵 생성 이론의 수식을 기반으로 하여 NbO2 IMT의 동작 메커니즘을 밝혀냈다. 또한, NbO2 IMT 소자의 메커니즘 연구에서 밝혀 낸 결과를 통해서 C-AFM (Current Atomic force microscope) 분석을 통해 NbO2 IMT 소자의 높은 누설 전류가 NbO2 박막의 결함 부분에서 발생하는 것을 보였다. NbO2 IMT 소자의 누설 전류가 발생하는 부분을 억제하고 성능을 향상시키기 위해서, 박막의 계면에 Barrier 층을 공정을 도입을 함으로써 기존의 빠른 동작 속도와 Drift-free 성질을 잃지 않음과 동시에 소자의 누설전류를 약 10-100배 낮추는 결과를 얻을 수 있었다. 이후에, NbO2 IMT 소자의 성능을 극대화하기 위해서, 상반되는 장단점을 가지고 있는 실버 기반 TS 소자와의 연결을 한 복합구조의 TS 소자를 제안함으로써 해당 소자가 고집적 및 빠른 속도의 크로스 포인트 구조를 가능하게 할 수 있다는 점을 보고 하였다. 마지막으로, 앞서 진행된 연구에서 제안한 Barrier 층이 삽입된 NbO2 소자가 MOSFET의 source, drain 및 gate부와 연결이 되었을 때, 기존의 SS 한계 값보다 훨씬 가파른 SS (<5mV/dec)를 가지는 트랜지스터가 구현이 가능함을 보고하였다.
URI
http://postech.dcollection.net/common/orgView/200000289388
https://oasis.postech.ac.kr/handle/2014.oak/111373
Article Type
Thesis
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse