Open Access System for Information Sharing

Login Library

 

Article
Cited 4 time in webofscience Cited 4 time in scopus
Metadata Downloads

Naa12 compensates for Naa10 in mice in the amino-terminal acetylation pathway SCIE SCOPUS

Title
Naa12 compensates for Naa10 in mice in the amino-terminal acetylation pathway
Authors
Kweon, Hyae YonLee, Mi-NiDorfel, MaxSeo, SeungwoonGottlieb, LeahPaPazyan, ThomasMcTiernan, NinaRee, RasmusBolton, DavidGarcia, AndrewFlory, MichaelCrain, JonathanSebold, AlisonLyons, ScottIsmail, AhmedMarchi, ElaineSonn, Seong-KeunJeong, Se-JinJeon, SejinJu, ShinyeongConway, Simon J.Kim, TaesooKim, Hyun-SeokLee, CheoljuRoh, Tae-YoungArnesen, ThomasMarmorstein, RonenOh, Goo TaegLyon, Gholson J.
Date Issued
2021-08
Publisher
ELIFE SCIENCES PUBLICATIONS LTD
Abstract
Amino-terminal acetylation is catalyzed by a set of N-terminal acetyltransferases (NATs). The NatA complex (including X-linked Naa10 and Naa15) is the major acetyltransferase, with 40-50% of all mammalian proteins being potential substrates. However, the overall role of amino-terminal acetylation on a whole-organism level is poorly understood, particularly in mammals. Male mice lacking Naa10 show no globally apparent in vivo amino-terminal acetylation impairment and do not exhibit complete embryonic lethality. Rather Naa10 nulls display increased neonatal lethality, and the majority of surviving undersized mutants exhibit a combination of hydrocephaly, cardiac defects, homeotic anterior transformation, piebaldism, and urogenital anomalies. Naa12 is a previously unannotated Naa10-like paralog with NAT activity that genetically compensates for Naa10. Mice deficient for Naa12 have no apparent phenotype, whereas mice deficient for Naa10 and Naa12 display embryonic lethality. The discovery of Naa12 adds to the currently known machinery involved in amino-terminal acetylation in mice.
URI
https://oasis.postech.ac.kr/handle/2014.oak/112665
DOI
10.7554/eLife.65952
ISSN
2050-084X
Article Type
Article
Citation
ELIFE, vol. 10, 2021-08
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

노태영ROH, TAE YOUNG
Dept of Life Sciences
Read more

Views & Downloads

Browse