Open Access System for Information Sharing

Login Library

 

Article
Cited 54 time in webofscience Cited 68 time in scopus
Metadata Downloads

Nanostructured chromium-based broadband absorbers and emitters to realize thermally stable solar thermophotovoltaic systems SCIE SCOPUS

Title
Nanostructured chromium-based broadband absorbers and emitters to realize thermally stable solar thermophotovoltaic systems
Authors
Muhammad Aamir AbbasKim joohoonAhsan Sarwar RanaInki KimBacha RehmanZubair AhmadYehia MassoudSeong JunhwaBadloe TrevonPark KeunhanMuhammad Qasim MehmoodMuhammad ZubairRho Junsuk
Date Issued
2022-05
Publisher
Royal Society of Chemistry
Abstract
© 2022 The Royal Society of ChemistryThe efficiency of traditional solar cells is constrained due to the Shockley-Queisser limit, to circumvent this theoretical limit, the concept of solar thermophotovoltaics (STPVs) has been introduced. The typical design of an STPV system consists of a wideband absorber with its front side facing the sun. The back of this absorber is physically attached to the back of a selective emitter facing a low-bandgap photovoltaic (PV) cell. We demonstrate an STPV system consisting of a wideband absorber and emitter pair achieving a high absorptance of solar radiation within the range of 400-1500 nm (covering the visible and infrared regions), whereas the emitter achieves an emittance of >95% at a wavelength of 2.3 μm. This wavelength corresponds to the bandgap energy of InGaAsSb (0.54 eV), which is the targeted PV cell technology for our STPV system design. The material used for both the absorber and the emitter is chromium due to its high melting temperature of 2200 K. An absorber and emitter pair is also fabricated and the measured results are in agreement with the simulated results. The design achieves an overall solar-to-electrical simulated efficiency of 21% at a moderate temperature of 1573 K with a solar concentration of 3000 suns. Furthermore, an efficiency of 15% can be achieved at a low temperature of 873 K with a solar concentration of 500 suns. The designs are also insensitive to polarization and show negligible degradation in solar absorptance and thermal emittance with a change in the angle of incidence.
URI
https://oasis.postech.ac.kr/handle/2014.oak/112765
DOI
10.1039/d1nr08400c
ISSN
2040-3364
Article Type
Article
Citation
Nanoscale, vol. 14, no. 17, page. 6425 - 6436, 2022-05
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

노준석RHO, JUNSUK
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse