Open Access System for Information Sharing

Login Library

 

Article
Cited 4 time in webofscience Cited 4 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorJeong, Jonghyun-
dc.contributor.authorRoscher, Moritz-
dc.contributor.authorAn, Woojin-
dc.contributor.authorSon, Sujung-
dc.contributor.authorSeol, Jae Bok-
dc.contributor.authorSung, Hyokyung-
dc.contributor.authorKim, Hyoung Seop-
dc.contributor.authorJagle, Eric-
dc.contributor.authorKim, Jung Gi-
dc.date.accessioned2022-06-21T23:50:10Z-
dc.date.available2022-06-21T23:50:10Z-
dc.date.created2022-03-22-
dc.date.issued2022-01-
dc.identifier.issn0921-5093-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/112937-
dc.description.abstractDesigning a metastable microstructure with a coherent nano-sized precipitation phase in the matrix is an effective strategy in improving the strength of materials. Recently, the rapid fusion and solidification cycle associated with laser-based additive manufacturing (AM) has emerged as a promising strategy to design unique microstructures with lattice distortion, solute segregation, and nano-sized precipitations. In this study, the evolution of nano-sized Cu-rich clusters in an AM-processed Fe-15Cu-15Ni alloy (wt.%) was investigated by conducting multiscale microstructural characterization. The results reveal that nano-sized Cu-rich clusters were generated inside the matrix due to a phase decomposition induced by the intrinsic heat treatment during the AM process. The heat energy generated by the laser beam not only initiated Cu-rich cluster formation, but also induced precipitation growth. Therefore, the average Cu-rich cluster size increased with an increase in the volumetric energy density. The hardness of the AM-processed Fe-15Cu-15Ni alloy at first increased with an increase in the energy density until a medium energy density level (140 J/mm(3)), due to formation of Cu-rich clusters. The hardness decreased with further increase in energy density (185 J/mm(3)), due to the Cu-rich cluster growth and retained austenite. The results reveal that laser-based AM successfully induces nano-cluster without the need for post-treatment and that the mechanical properties of materials can be optimized by adjusting the processing parameters in a way to enable nano-sized cluster and phase formation.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.relation.isPartOfMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING-
dc.titleEvolution of nanosized Cu-rich clusters in a Fe-15Cu-15Ni alloy produced by laser powder bed fusion-
dc.typeArticle-
dc.identifier.doi10.1016/j.msea.2021.142462-
dc.type.rimsART-
dc.identifier.bibliographicCitationMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, v.832-
dc.identifier.wosid000761589500003-
dc.citation.titleMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING-
dc.citation.volume832-
dc.contributor.affiliatedAuthorSon, Sujung-
dc.contributor.affiliatedAuthorKim, Hyoung Seop-
dc.identifier.scopusid2-s2.0-85120780373-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusSTAINLESS-STEEL 316L-
dc.subject.keywordPlusSELECTIVE LASER-
dc.subject.keywordPlusHIGH-STRENGTH-
dc.subject.keywordPlusFE-CU-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusPRECIPITATION KINETICS-
dc.subject.keywordPlusPHASE-DECOMPOSITION-
dc.subject.keywordPlusINCONEL 718-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordPlusNI-
dc.subject.keywordAuthorAdditive manufacturing-
dc.subject.keywordAuthorPrecipitation-
dc.subject.keywordAuthorSteel-
dc.subject.keywordAuthorSpinodal decomposition-
dc.subject.keywordAuthorMicrostructure-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김형섭KIM, HYOUNG SEOP
Ferrous & Eco Materials Technology
Read more

Views & Downloads

Browse