Open Access System for Information Sharing

Login Library

 

Article
Cited 17 time in webofscience Cited 18 time in scopus
Metadata Downloads

Microstructure and defect effects on strength and hydrogen embrittlement of high-entropy alloy CrMnFeCoNi processed by high-pressure torsion SCIE SCOPUS

Title
Microstructure and defect effects on strength and hydrogen embrittlement of high-entropy alloy CrMnFeCoNi processed by high-pressure torsion
Authors
Mohammadi, AbbasEdalati, PayamArita, MakotoBae, Jae WungKim, Hyoung SeopEdalati, Kaveh
Date Issued
2022-06
Publisher
ELSEVIER SCIENCE SA
Abstract
High-entropy alloys (HEAs) are considered as new hydrogen compatible materials, but enhancing their yield strength without deteriorating their hydrogen embrittlement resistance is challenging. In this study, various kinds of defects are introduced into a CrMnFeCoNi Cantor alloy by plastic straining via the high-pressure torsion method, and the correlations of applied strain, microstructural features, strength, and hydrogen embrittlement are studied. The unstrained coarse-grained alloy shows elongations over 80% under hydrogen, but its yield strength is only 220 MPa. Twinning is a major deformation mechanism at the early stages of straining, resulting in over 1 GPa yield strength and 9% elongation in the presence of hydrogen. With a further increase in strain, dislocation-based defects including Lomer-Cottrell locks and D-Frank partial dislocations with low mobility are formed, enhancing the strength further. At large strains, nanograins with high-angle boundaries are generated, resulting in over 1900 MPa strength with poor hydrogen embrittlement resistance due to large hydrogen diffusion and hydrogen-enhanced decohesion. These results suggest that twins and defects with low mobility such as Lomer-Cottrell locks and D-Frank partial dislocations are effective to achieve a combination of high yield strength and good hydrogen embrittlement resistance by suppressing the hydrogen-enhanced localized plasticity in HEAs.
URI
https://oasis.postech.ac.kr/handle/2014.oak/112940
DOI
10.1016/j.msea.2022.143179
ISSN
0921-5093
Article Type
Article
Citation
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, vol. 844, 2022-06
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김형섭KIM, HYOUNG SEOP
Ferrous & Eco Materials Technology
Read more

Views & Downloads

Browse