Open Access System for Information Sharing

Login Library

 

Article
Cited 3 time in webofscience Cited 3 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorJeong, Je-Un-
dc.contributor.authorJi, Dae-Yun-
dc.contributor.authorLee, Kwon-Yeong-
dc.contributor.authorHwang, Woonbong-
dc.contributor.authorLee, Chang-Hun-
dc.contributor.authorKim, Sung-Jae-
dc.contributor.authorLee, Jeong-Won-
dc.date.accessioned2022-06-28T02:40:15Z-
dc.date.available2022-06-28T02:40:15Z-
dc.date.created2021-08-17-
dc.date.issued2021-08-
dc.identifier.issn1996-1944-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/113216-
dc.description.abstractIn general, the dropwise condensation supported by superhydrophobic surfaces results in enhanced heat transfer relative to condensation on normal surfaces. However, in supersaturated environments that exceed a certain supersaturation threshold, moisture penetrates the surface structures and results in attached condensation, which reduces the condensation heat transfer efficiency. Therefore, when designing superhydrophobic surfaces for condensers, the surface structure must be resistant to attached condensation in supersaturated conditions. The gap size and complexity of the micro/nanoscale surface structure are the main factors that can be controlled to maintain water repellency in supersaturated environments. In this study, the condensation heat exchange performance was characterized for three different superhydrophobic titanium surface structures via droplet behavior (DB) mapping to evaluate their suitability for power plant condensers. In addition, it was demonstrated that increasing the surface structure complexity increases the versatility of the titanium surfaces by extending the window for improved heat exchange performance. This study demonstrates the usefulness of DB mapping for evaluating the performance of superhydrophobic surfaces regarding their applicability for industrial condenser systems.-
dc.languageEnglish-
dc.publisherMDPI-
dc.relation.isPartOfMATERIALS-
dc.titleEffect of Surface Structure Complexity on Interfacial Droplet Behavior of Superhydrophobic Titanium Surfaces for Robust Dropwise Condensation-
dc.typeArticle-
dc.identifier.doi10.3390/ma14154107-
dc.type.rimsART-
dc.identifier.bibliographicCitationMATERIALS, v.14, no.15-
dc.identifier.wosid000682034200001-
dc.citation.number15-
dc.citation.titleMATERIALS-
dc.citation.volume14-
dc.contributor.affiliatedAuthorHwang, Woonbong-
dc.identifier.scopusid2-s2.0-85111633141-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusHEAT-TRANSFER-
dc.subject.keywordPlusENHANCED CONDENSATION-
dc.subject.keywordPlusSIMPLE FABRICATION-
dc.subject.keywordPlusALUMINUM-
dc.subject.keywordPlusTRANSPARENT-
dc.subject.keywordPlusWETTABILITY-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusSTEAM-
dc.subject.keywordPlusTUBE-
dc.subject.keywordAuthorsuperhydrophobic surface-
dc.subject.keywordAuthorcondensation heat transfer-
dc.subject.keywordAuthormicro-nanostructure-
dc.subject.keywordAuthordroplet behavior-
dc.subject.keywordAuthordropwise condensation-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

황운봉HWANG, WOON BONG
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse