Open Access System for Information Sharing

Login Library

 

Article
Cited 18 time in webofscience Cited 19 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorMay, Molly A.-
dc.contributor.authorJiang, Tao-
dc.contributor.authorDu, Chenfeng-
dc.contributor.authorPark, Kyoung-Duck-
dc.contributor.authorXu, Xiaodong-
dc.contributor.authorBelyanin, Alexey-
dc.contributor.authorRaschke, Markus B.-
dc.date.accessioned2022-12-26T01:20:21Z-
dc.date.available2022-12-26T01:20:21Z-
dc.date.created2022-12-23-
dc.date.issued2021-01-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/114694-
dc.description.abstractTransition-metal dichalcogenide heterostructures are an emergent platform for novel many-body states from exciton condensates to nanolasers. However, their exciton dynamics are difficult to disentangle due to multiple competing processes with time scales varying over many orders of magnitude. Using a configurable nano-optical cavity based on a plasmonic scanning probe tip, the radiative (rad) and nonradiative (nrad) relaxation of intra- and interlayer excitons is controlled. Tuning their relative rates in a WSe2/MoSe2 heterobilayer over 6 orders of magnitude in tip-enhanced photoluminescence spectroscopy reveals a cavityinduced crossover from nonradiative quenching to Purcell-enhanced radiation. Rate equation modeling with the interlayer charge transfer time as a reference clock allows for a comprehensive determination from the long interlayer exciton (IX) radiative lifetime tau(rad)(IX) = (94 +/- 27) ns to the 5 orders of Irad magnitude faster competing nonradiative lifetime tau(rad)(IX) = (0.6 +/- 0.2) ps. This approach of nanocavity clock spectroscopy is generally applicable to a wide range of excitonic systems with competing decay pathways.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.relation.isPartOfNano Letters-
dc.titleNanocavity Clock Spectroscopy: Resolving Competing Exciton Dynamics in WSe<sub>2</sub>/MoSe<sub>2</sub> Heterobilayers-
dc.typeArticle-
dc.identifier.doi10.1021/acs.nanolett.0c03979-
dc.type.rimsART-
dc.identifier.bibliographicCitationNano Letters, v.21, no.1, pp.522 - 528-
dc.identifier.wosid000611082000070-
dc.citation.endPage528-
dc.citation.number1-
dc.citation.startPage522-
dc.citation.titleNano Letters-
dc.citation.volume21-
dc.contributor.affiliatedAuthorPark, Kyoung-Duck-
dc.identifier.scopusid2-s2.0-85098788607-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusULTRAFAST CHARGE-TRANSFER-
dc.subject.keywordPlusINDIRECT INTERLAYER EXCITONS-
dc.subject.keywordPlusMODE VOLUMES-
dc.subject.keywordPlusWAALS-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusMOS2/WS2-
dc.subject.keywordPlusHETEROSTRUCTURES-
dc.subject.keywordPlusMONOLAYER-
dc.subject.keywordPlusEMISSION-
dc.subject.keywordPlusEMITTERS-
dc.subject.keywordAuthorInterlayer exciton-
dc.subject.keywordAuthorexciton lifetime-
dc.subject.keywordAuthorplasmonic nanocavity-
dc.subject.keywordAuthornear-field spectroscopy-
dc.subject.keywordAuthortip-enhanced photoluminescence-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse